# How braids can help to compute Hochschild cohomology

Victoria LEBED, Trinity College Dublin

#### Cohomological Methods in Geometry

Freiburg, February 2017

$$(ab)c = a(bc)$$

$$z^{-1}(y^{-1}xy)z = (z^{-1}y^{-1}z)(z^{-1}xz)(z^{-1}yz)$$

### Yang-Baxter equation: classics

<u>Data</u>: vector space V,  $\sigma: V^{\otimes 2} \to V^{\otimes 2}$ .

Yang-Baxter equation (YBE)

$$\sigma_1\sigma_2\sigma_1=\sigma_2\sigma_1\sigma_2\colon V^{\otimes 3}\to V^{\otimes 3}$$

$$\sigma_1 = \sigma {\otimes} \operatorname{\mathsf{Id}}_V, \sigma_2 = \operatorname{\mathsf{Id}}_V {\otimes} \sigma$$

#### Avatars in:

- → statistical mechanics;
- quantum field theory;
- → algebra;
- → low-dimensional topology:

$$\sigma \longleftrightarrow \searrow$$

$$\uparrow$$



Reidemeister III move Data: set S,  $\sigma: S^{\times 2} \to S^{\times 2}$ .

Set-theoretic YBE (Drinfel'd 1990)

$$\boxed{\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \colon S^{\times 3} \to S^{\times 3}} \qquad \sigma_1 = \sigma \times \mathsf{Id}_S, \sigma_2 = \mathsf{Id}_S \times \sigma$$

$$\sigma_1 = \sigma \times Id_S, \sigma_2 = Id_S \times \sigma_S$$

Solutions are called braided sets.

Examples:

- $\checkmark \sigma(x,y) = (x,y);$
- $\checkmark \sigma(x,y) = (y,x) \sim R$ -matrices;
- ✓ Lie algebra (V, []), central element  $1 \in V$ ,  $\sigma(\mathbf{x} \otimes \mathbf{y}) = \mathbf{y} \otimes \mathbf{x} + \hbar \mathbf{1} \otimes [\mathbf{x}, \mathbf{y}].$

YBE for 
$$\sigma \iff$$
 Jacobi identity for []

# 3 Self-distributivity

✓ set S, binary operation  $\triangleleft$ ,  $\sigma(x,y) = (y, x \triangleleft y)$ 

YBE for 
$$\sigma \iff \mathsf{self}\mathsf{-distributivity}$$
 for  $\lhd$ 

Self-distributivity: 
$$(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$$

#### Examples:

 $\Rightarrow$  group S with  $x \triangleleft y = y^{-1}xy$ :

$$z^{-1}(y^{-1}xy)z = (z^{-1}y^{-1}z)(z^{-1}xz)(z^{-1}yz)$$

 $\Rightarrow$  abelian group S, t: S  $\rightarrow$  S,  $a \triangleleft b = ta + (1 - t)b$ .

#### Applications:

- → invariants of knots and knotted surfaces;
- → a total order on braid groups;
- → Hopf algebra classification.



✓ monoid 
$$(S, *, 1)$$
,  $\sigma(x, y) = (1, x * y)$ ;

YBE for 
$$\sigma \iff$$
 associativity for  $*$ 

✓ lattice 
$$(S, \land, \lor)$$
,  $\sigma(x, y) = (x \land y, x \lor y)$ .

All these braidings are idempotent:  $\sigma \sigma = \sigma$ .

#### Universal enveloping monoids:

$$\mathsf{Mon}(S,\sigma) = \langle \ S \mid xy = y'x' \ \mathsf{whenever} \ \sigma(x,y) = (y',x') \ \rangle$$

U. e. groups and algebras are defined similarly.



### Theorem: $(S, \sigma)$ a "nice" finite braided set, $\sigma^2 = Id \implies$

- ✓ Mon(S,  $\sigma$ ) is of I-type, cancellative, Ore;
- ✓  $Grp(S, \sigma)$  is solvable, Garside;
- ✓  $\mathbb{k}$  Mon(S,  $\sigma$ ) is Koszul, noetherian, Cohen–Macaulay,

Artin-Schelter regular

(Manin, Gateva-Ivanova & Van den Bergh, Etingof – Schedler – Soloviev, Jespers – Okniński, Chouraqui 80'-...).

Example: 
$$S = \{a, b\}, \quad aa \stackrel{\sigma}{\longleftrightarrow} bb$$

$$\mathsf{Grp}(S,\sigma) = \langle \ \mathfrak{a},\mathfrak{b} \mid \mathfrak{a}^2 = \mathfrak{b}^2 \ \rangle =: \mathsf{G}.$$

Realisation by Euclidean transformations of  $\mathbb{R}^2$ :



$$b = a'ba'$$

$$\downarrow^{\alpha = \alpha'b}$$

$$a^2 = b^2$$

 $\mathbb{R}^2/G \cong \text{Klein bottle:}$ 





$$\mathsf{Mon}(S,\sigma) = \langle \ S \mid xy = y'x' \ \mathsf{whenever} \ \sigma(x,y) = (y',x') \ \rangle$$

#### Examples:

✓ monoid  $(S, *, 1), \sigma(x, y) = (1, x * y),$ 

$$S \simeq \text{Mon}(S, \sigma)/1 = 1_{\text{Mon}};$$

✓ Lie algebra (V, [], 1),  $\sigma(x \otimes y) = y \otimes x + \hbar 1 \otimes [x, y]$ ,

$$\mathsf{UEA}(V,\,[\,]) \simeq {\mathbb{k}\,\mathsf{Mon}(V,\,\sigma)}/{1} = \mathbf{1}_{\mathsf{Mon}}.$$

### **Representations**

$$\mathsf{Mon}(S,\sigma) = \langle \ S \mid xy = y'x' \ \text{whenever} \ \sigma(x,y) = (y',x') \ \rangle$$

Representations of  $(S, \sigma)$  := representations of  $\mathbb{k}$  Mon $(S, \sigma)$ , i.e. vector spaces M with  $M \times S \xrightarrow{\cdot} M$  s.t.

$$(m \cdot x) \cdot y = (m \cdot y') \cdot x'$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$m \times y \qquad m \times y$$

#### Examples:

- $\Rightarrow$  trivial rep.:  $M = \mathbb{k}, m \cdot x = m;$
- $\Rightarrow$   $M = \mathbb{k} \operatorname{Mon}(S, \sigma), \ \mathbf{m} \cdot \mathbf{x} = \mathbf{m} \mathbf{x};$
- → usual reps for monoids, Lie algebras, self-distributive structures.

#### A cohomology theory for braided sets should:

1) Describe diagonal deformations

$$\sigma_q(x,y) = q^{\omega(x,y)}\sigma(x,y), \ \omega \colon S \times S \to \mathbb{Z} :$$

 $\omega$  a 2-cocycle  $\implies$   $\sigma_q$  a YBE solution.

2) Yield knot and knotted surface invariants:

$$(S, \sigma)$$
-coloured diagram  $(D, \mathcal{C})$  &  $\omega \colon S \times S \to \mathbb{Z}$ 

$$\rightarrow \quad \text{Boltzmann weight } \mathscr{B}_{\omega}(\mathcal{C}) = \sum_{\substack{y' \\ x \nearrow y'}} \omega(x,y) - \sum_{\substack{x \\ y' \nearrow x'}} \omega(x,y).$$

$$\omega$$
 a 2-cocycle  $\implies$  a knot invariant given by  $\{\mathscr{B}_{\omega}(\mathbb{C}) \mid \mathbb{C} \text{ is a } (S,\sigma)\text{-colouring of D}\}.$ 

# 7 A cohomology theory?

A cohomology theory for braided sets should:

- 3) Unify cohomology theories for
  - → associative structures,
  - → Lie algebras,
  - ⇒ self-distributive structures etc.
- + explain parallels between them,
- + suggest theories for new structures.
- 4) Compute the cohomology of  $k \text{ Mon}(S, \sigma)$ .

<u>Data</u>: braided set  $(S, \sigma)$  & bimodule M over it.

#### Construction:

$$\begin{array}{l} C^{n}(S,\sigma;M) = \text{Maps}(S^{\times n},M), \\ d^{n} = \sum_{i=1}^{n+1} (-1)^{i-1} (d^{n;i}_{l} - d^{n;i}_{r}) \colon C^{n} \to C^{n+1}, \end{array}$$

$$x'_{i} \cdot f(x'_{1} \dots x'_{i-1} x_{i+1} \dots x_{n+1})$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$



#### Theorem:

- $\rightarrow$   $d^{n+1}d^n = 0$ :
- $H^*(S, \sigma; M)$  is the braided cohomology of  $(S, \sigma)$  with coefs in M;
- $\rightarrow$  for "nice" M, there is a cup product  $\smile$ :  $H^n \otimes H^m \to H^{n+m}$ ;
- → other good properties.

# 9 A good theory?

- 1) & 2) For  $\omega \in C^2(S, \sigma; \mathbb{Z})$ ,  $d^2\omega = 0 \implies \omega \text{ yields Boltzmann weights}$  & diagonal deformations,  $\omega = d^1\theta \implies \omega \text{ yields trivial...}$
- 3) Unifies classical cohomology theories.

 $d_1^{n;i}f$ :

Example: monoid 
$$(S, *, 1)$$
,  $\sigma(x, y) = (1, x * y)$ ,

# 9 A good theory?

### 4) Quantum symmetriser QS:



#### QS is an isomorphism when

- $\Rightarrow$   $\sigma \sigma = \text{Id and Char } \mathbb{k} = 0$  (Farinati & García-Galofre 2016);
- $\Rightarrow$   $\sigma\sigma = \sigma$  (*L.* 2016).

#### Applications:

- → factorisable groups,
- → Young tableaux.

Open problem: How far is QS from being an iso in general?