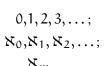
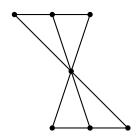
How forgetting group laws leads to a universal knot invariant

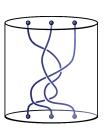
Victoria LEBED, Trinity College Dublin

CDMX, May 2017

$$g \triangleleft h = h^{-1}gh$$







Self-distributivity: $\boxed{(\alpha \lhd b) \lhd c = (\alpha \lhd c) \lhd (b \lhd c)}$

Self-distributivity:
$$(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$$

1 Mituhisa Takasaki, a fresh Japanese maths PhD in 1940 Harbin.

Motivation: geometric symmetries.

Self-distributivity:
$$(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$$

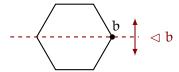
1 Mituhisa Takasaki, a fresh Japanese maths PhD in 1940 Harbin.

Motivation: geometric symmetries.

$$a \quad b \quad a \triangleleft b$$

General construction: Abelian group A with a < b = 2b - a.

One more geometric example: \mathbb{Z}_n .



Self-distributivity: $(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$

(2) Gavin Wraith, a bored American schoolboy in the 50s.

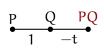
Game 1: Abelian group $A, t: A \rightarrow A, \quad a \triangleleft b = ta + (1-t)b.$

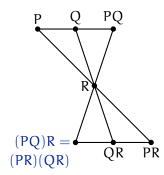
$$\begin{array}{ccc} P & Q & PQ \\ \hline & 1 & -t \end{array}$$

Self-distributivity: $(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$

2) Gavin Wraith, a bored American schoolboy in the 50s.

Game 1: Abelian group A, t: $A \rightarrow A$, $a \triangleleft b = ta + (1-t)b$.

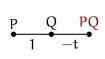


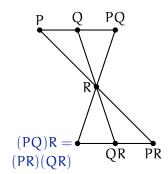


Self-distributivity:
$$(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$$

2) Gavin Wraith, a bored American schoolboy in the 50s.

Game 1: Abelian group A, t: A \rightarrow A, $a \triangleleft b = ta + (1 - t)b$.





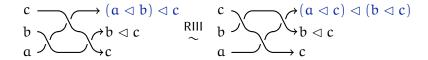
Game 2: Any group (example: S_5) with $g \triangleleft h = h^{-1}gh$.

Self-distributivity:
$$(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$$

③ David Joyce & Sergei Matveev, colourists separated by the Iron Curtain.

Diagram colourings by
$$(S, \triangleleft)$$
 for positive braids:

$$b \nearrow a \triangleleft b$$

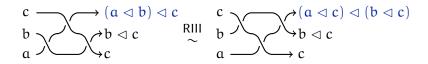


Self-distributivity:
$$(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$$

3 David Joyce & Sergei Matveev, colourists separated by the Iron Curtain.

Diagram colourings by
$$(S, \triangleleft)$$
 for positive braids:

$$b \nearrow a \triangleleft b$$



$$\mathsf{End}(S^{\mathbf{n}}) \leftarrow \mathsf{B}^{+}_{\mathbf{n}} \qquad \mathsf{RIII} \qquad (\mathfrak{a} \lhd \mathfrak{b}) \lhd \mathsf{c} = (\mathfrak{a} \lhd \mathsf{c}) \lhd (\mathfrak{b} \lhd \mathsf{c})$$

$$\overline{a} \xrightarrow{\beta} \overline{a}$$

Diagram colourings by
$$(S, \lhd)$$
 b $a \lhd b$ $a \lhd b$ b b for braids and knots:

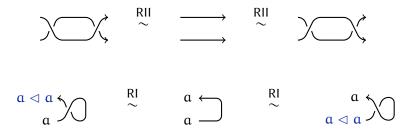
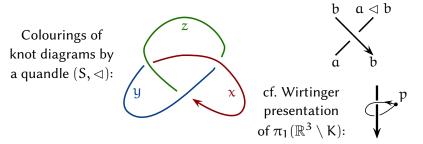


Diagram colourings by
$$(S, \triangleleft)$$
 $b \rightarrow a \triangleleft b$ $a \triangleleft b \rightarrow b$ for braids and knots:

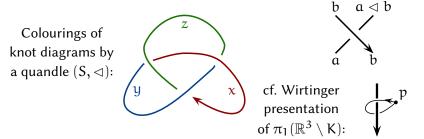
$$b \nearrow a \triangleleft b \qquad a \triangleleft b$$

pos. braids	RIII	$(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$	5
braids	& RII	$\forall b, a \mapsto a \triangleleft b \text{ invertible}$	1
knots & links	& RI	$a \lhd a = a$	C

shelf rack quandle

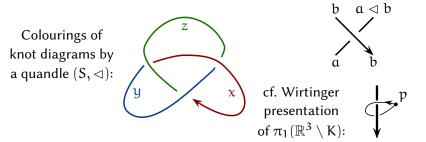


Proposition: $\#\{(S, \lhd)\text{-colourings of diagrams}\}\$ is a knot invariant.



Proposition: $\#\{(S, \lhd)\text{-colourings of diagrams}\}\$ is a knot invariant.

Example (Fox '56):
$$(\mathbb{Z}_3, \alpha \triangleleft b = 2b - \alpha)$$
.



Proposition: $\#\{(S, \lhd)\text{-colourings of diagrams}\}\$ is a knot invariant.

Example (Fox '56):
$$(\mathbb{Z}_3, \ a \lhd b = 2b - a)$$
.

9 colourings

4 Colouring invariants are cool!

- ✓ Small quandles are numerous.
- ✓ Easy to program.
- ✓ Generalise to knotted graphs, higher-dimensional knots etc.

- / 🛂
- ✓ Small quandles are numerous.
- ✓ Easy to program.
- ✓ Generalise to knotted graphs, higher-dimensional knots etc.
- ✓ Joyce-Matveev '82: Extremely powerful:

$$Knots \Big/ K = -K^* \overset{\longleftarrow}{\longrightarrow} Quandles$$

$$K \overset{\longleftarrow}{\longmapsto} Q(K): \quad \text{generators} \; \leftrightarrow \; \text{arcs of } D_K$$

$$\text{relations} \; \leftrightarrow \; \text{crossings of } D_K$$

$$c = \alpha \lhd b$$

- ✓ Small quandles are numerous.
- ✓ Easy to program.
- ✓ Generalise to knotted graphs, higher-dimensional knots etc.
- ✓ *Joyce–Matveev* '82: Extremely powerful:

$$K = -K^* \hookrightarrow Quandles$$

$$K \longmapsto Q(K): \quad \text{generators} \ \leftrightarrow \ \text{arcs of } D_K$$

$$\text{relations} \ \leftrightarrow \ \text{crossings of } D_K$$

$$c = a \lhd b$$

In particular, the fundamental quandle Q(K)

- + does not depend on the choice of a diagram D_K of K;
- + is a weak universal knot invariant.

Colouring invariants are cool!

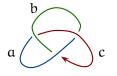
Knots
$$/$$
 $K = -K^* \hookrightarrow Quandles$

$$K \longmapsto Q(K): \quad \text{generators} \ \leftrightarrow \ \text{arcs of} \ D_K$$

relations \leftrightarrow crossings of D_K

$$c = a \triangleleft b$$

Example:



$$a = c \triangleleft b$$

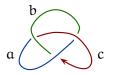
$$b = a \triangleleft c$$

$$c = b \triangleleft a$$

Colouring invariants are cool!

$$\begin{array}{c} \text{Knots} \Big/ K = -K^* & \hookrightarrow \text{Quandles} \\ K & \longmapsto Q(K): \quad \text{generators} \; \leftrightarrow \; \text{arcs of } D_K \\ & \quad \text{relations} \; \leftrightarrow \; \text{crossings of } D_K \\ \hline c = \alpha \lhd b & \quad \alpha & b \end{array}$$

Example:



$$a = c \triangleleft b$$

$$b = a \triangleleft c$$

$$c = b \triangleleft a$$

Remark: Colourings = representations:

$$Col_S(D_K) \leftrightarrow Hom_{Qu}(Q(K), S)$$
.

$End(S^n) \leftarrow B^+_n$	$(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$	
$Aut(S^{\mathfrak{n}}) \leftarrow B_{\mathfrak{n}}$	$(a \triangleleft b) \stackrel{\sim}{\triangleleft} b = a = (a \stackrel{\sim}{\triangleleft} b) \triangleleft b$	
$S \hookrightarrow (S^n)^{B_n}$	$a \lhd a = a$	
$a \mapsto (a, \dots, a)$		•

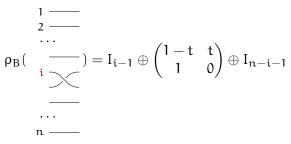
shelf rack quandle

$End(S^{\mathfrak{n}}) \leftarrow B^{+}_{\mathfrak{n}}$	$(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$	shelf
$Aut(S^n) \leftarrow B_n$	$(a \triangleleft b) \stackrel{\sim}{\triangleleft} b = a = (a \stackrel{\sim}{\triangleleft} b) \triangleleft b$	rack
$S \hookrightarrow (S^n)^{B_n}$	$a \lhd a = a$	quan
$a \mapsto (a, \dots, a)$,

dle

Examples:

S	$a \triangleleft b$	(S, \lhd) is a	,
$\mathbb{Z}[t^{\pm 1}]Mod$	ta + (1-t)b	quandle	(red.) Burau: $B_n \to GL_n(\mathbb{Z}[t^{\pm}])$



S	a ⊲ b	(S, \lhd) is a	in braid theory
$\mathbb{Z}[\mathfrak{t}^{\pm 1}]$ Mod	ta + (1-t)b	quandle	(red.) Burau: $B_n \to GL_n(\mathbb{Z}[t^{\pm}])$
group	b ^{−1} ab	quandle	$Artin: B_n \hookrightarrow Aut(F_n)$

Remark: Quandles are "racks and ruins of groups":

- \checkmark Free quandles are conjugation quandles.
- ✓ Quandle axioms = conjugation axioms.

Colouring invariants for braids

S	$a \triangleleft b$	(S, \lhd) is a	in braid theory
$_{\mathbb{Z}[\mathfrak{t}^{\pm 1}]}$ Mod	ta + (1-t)b	quandle	(red.) Burau: $B_n \to GL_n(\mathbb{Z}[t^{\pm}])$
group	b ^{−1} ab	quandle	$Artin \colon B_n \hookrightarrow Aut(F_n)$
tw	isted linear quan	dle	Lawrence-Krammer-Bigelow

Remark: Quandles are "racks and ruins of groups":

- \checkmark Free quandles are conjugation quandles.
- ✓ Quandle axioms = conjugation axioms.

5 Colouring invariants for braids

S	$a \triangleleft b$	(S, \lhd) is a	in braid theory
$_{\mathbb{Z}[\mathfrak{t}^{\pm 1}]}$ Mod	ta + (1-t)b	quandle	(red.) Burau: $B_n \to GL_n(\mathbb{Z}[t^{\pm}])$
group	b ^{−1} ab	quandle	$Artin: B_n \hookrightarrow Aut(F_n)$
tw	isted linear quan	dle	Lawrence-Krammer-Bigelow
$\mathbb Z$	a+1	rack	$lg(w), lk_{i,j}$

Remark: Quandles are "racks and ruins of groups":

- ✓ Free quandles are conjugation quandles.
- ✓ Quandle axioms = conjugation axioms.

5 Colouring invariants for braids

S	a ⊲ b	(S, \lhd) is a	in braid theory
$_{\mathbb{Z}[t^{\pm 1}]}Mod$	ta + (1-t)b	quandle	(red.) Burau: $B_n \to GL_n(\mathbb{Z}[t^{\pm}])$
group	b ^{−1} ab	quandle	$Artin: B_n \hookrightarrow Aut(F_n)$
tw	isted linear quan	dle	Lawrence-Krammer-Bigelow
$\mathbb Z$	a+1	rack	$lg(w), lk_{i,j}$
	free shelf		Dehornoy: order on B _n

Remark: Quandles are "racks and ruins of groups":

- ✓ Free quandles are conjugation quandles.
- ✓ Quandle axioms = conjugation axioms.

Remark: Free shelves are extremely rich objects!

6 Building bridges

Self-distributivity: $\boxed{(\alpha \lhd b) \lhd c = (\alpha \lhd c) \lhd (b \lhd c)}$

(4) Richard Laver & Patrick Dehornoy, set theorists hiding from the I3 axiom.

Self-distributivity: $\boxed{(\alpha \lhd b) \lhd c = (\alpha \lhd c) \lhd (b \lhd c)}$

(4) Richard Laver & Patrick Dehornoy, set theorists hiding from the I3 axiom.

 \implies Discovery of new shelves from

✓ topology: braids;

Self-distributivity: $\boxed{ (a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c) }$

4 Richard Laver & Patrick Dehornoy, set theorists hiding from the I3 axiom.

 \implies Discovery of new shelves from

- ✓ topology: braids;
- ✓ algebra:

 \mathcal{F}_1 = the free shelf on 1 generator γ ;

Self-distributivity:
$$\boxed{(\alpha \lhd b) \lhd c = (\alpha \lhd c) \lhd (b \lhd c)}$$

4 Richard Laver & Patrick Dehornoy, set theorists hiding from the I3 axiom.

⇒ Discovery of new shelves from

- ✓ topology: braids;
- ✓ algebra:

 \mathcal{F}_1 = the free shelf on 1 generator γ ;

Laver table $A_n = \left\{ \begin{array}{l} 1, 2, 3, \ldots, 2^n \end{array} \right\}$ with the unique SD \rhd satisfying $\alpha \rhd 1 \equiv \alpha + 1 \mod 2^n$.

Self-distributivity: $\boxed{ (a \vartriangleleft b) \vartriangleleft c = (a \vartriangleleft c) \vartriangleleft (b \vartriangleleft c) }$

(4) Richard Laver & Patrick Dehornoy, set theorists hiding from the I3 axiom.

 \implies Discovery of new shelves from

- ✓ topology: braids;
- ✓ algebra:

 \mathcal{F}_1 = the free shelf on 1 generator γ ;

Laver table $A_n = \left\{1, 2, 3, \dots, 2^n\right\}$ with the unique SD \triangleright satisfying $a \triangleright 1 \equiv a+1 \mod 2^n$.

$$\gamma = 1$$
 $(\gamma \triangleright \gamma) \triangleright \gamma = 3$ $((\gamma \triangleright \gamma) \triangleright \gamma) \triangleright \gamma = 4$...

Elementary definition:
$$A_n = (\{1, 2, 3, ..., 2^n\}, \triangleright)$$
 s.t. $a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$ & $a \triangleright 1 \equiv a+1 \mod 2^n$.

Some of the **elementary properties**:

✓
$$A_n \sim$$
 all finite monogenic shelves (*Drápal* '97).

A_3	1	2	3	4	5	6	7	8
1	2	4	6	8	2	4	6	8
2	3	4	7	8	3	4	7	8
3	4	8	4	8	4	8	4	8
4	5	6	7	8	5	6	7	8
5	6	8	6	8	6	8	6	8 8 8 8 8 8
6	7	8	7	8	7	8	7	8
7	8	8	8	8	8	8	8	8
8	1	2	3	4	5	6	7	8

Elementary definition:
$$A_n = (\{1, 2, 3, \dots, 2^n\}, \triangleright) \text{ s.t.}$$
 $a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$ & $a \triangleright 1 \equiv a+1 \mod 2^n$.

Some of the **elementary properties:**

$$\checkmark$$
 $A_n \sim$ all finite monogenic shelves (*Drápal* '97).

✓ Periodic rows.

A_3									
1	2	4	6	8	2	4	6	8	$\pi_3(1) = 4$
2	3	4	7	8					$\pi_3(2) = 4$
									$\pi_3(3) = 2$
4	5	6	7	8					$\pi_3(4) = 4$
5	6	8							$\pi_3(5) = 2$
6	7	8							$\pi_3(6) = 2$
7	8								$\pi_3(7) = 1$
8	1	2	3	4	5	6	7	8	$\pi_3(8) = 8$

Elementary definition:
$$A_n = (\{1, 2, 3, \dots, 2^n\}, \triangleright) \text{ s.t.}$$
 $a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$ & $a \triangleright 1 \equiv a+1 \mod 2^n$.

Some of the **elementary properties**:

$$A_n \cong \mathfrak{F}_1 \big/ (\cdots ((\gamma \rhd \gamma) \rhd \gamma) \cdots) \rhd \gamma = \gamma \cdot$$

✓
$$A_n \sim$$
 all finite monogenic shelves (*Drápal* '97).

✓ Periodic rows. ✓ Solutions of
$$p \triangleright q = q$$
.

A_3	1	2	3	4	5	6	7	8
1	2	4	6	8	2	4	6	8
2	3	4	7	8			7	8
3	4	8						8
4	5	6	7	8	5	6	7	8
5	6	8						8
6	7	8						
7	8							8
8	1	2	3	4	5	6	7	8

Elementary conjectures:

$$\checkmark \pi_n(1) \underset{n \to \infty}{\longrightarrow} \infty.$$

$$\checkmark \pi_n(1) \leqslant \pi_n(2).$$

$$\checkmark \varprojlim_{n \in \mathbb{N}} A_n \supset \mathcal{F}_1.$$

Elementary conjectures:

$$\checkmark \pi_n(1) \underset{n\to\infty}{\longrightarrow} \infty.$$

$$\checkmark \pi_n(1) \leqslant \pi_n(2).$$

$$\checkmark \varprojlim_{n \in \mathbb{N}} A_n \supset \mathfrak{F}_1.$$

Theorems under the axiom I3!

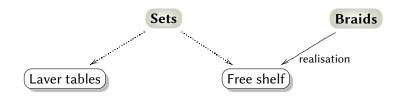
Elementary conjectures:

$$\checkmark \pi_n(1) \underset{n \to \infty}{\longrightarrow} \infty.$$

✓
$$\pi_n(1) \leq \pi_n(2)$$
.

$$\checkmark \varprojlim_{n \in \mathbb{N}} A_n \supset \mathfrak{F}_1.$$

Theorems under the axiom I3!



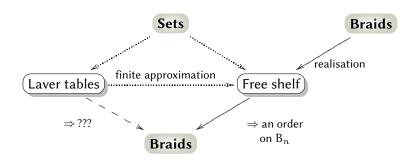
Elementary conjectures:

$$\checkmark \ \pi_n(1) \underset{n \to \infty}{\to} \infty.$$

$$\checkmark \pi_n(1) \leqslant \pi_n(2).$$

$$\checkmark \varprojlim_{n \in \mathbb{N}} A_n \supset \mathcal{F}_1.$$

Theorems under the axiom I3!



(5) Fenn-Rourke-Sanderson & Carter-Jelsovsky-Kamada-Langford-Saito, refined knot colourists.

Shelf $S, \ \varphi \colon S \times S \to \mathbb{Z}_n \qquad \rightsquigarrow \qquad \varphi\text{-weights:}$

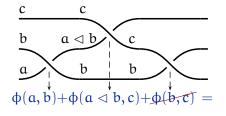
 $S\text{-coloured diagram }D \quad \longmapsto \quad \sum_{b} \pm \varphi(a,b)$

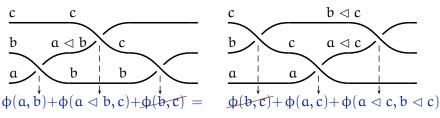
(5) Fenn–Rourke–Sanderson & Carter–Jelsovsky–Kamada–Langford–Saito, refined knot colourists.

Shelf S, $\phi \colon S \times S \to \mathbb{Z}_n$ \rightsquigarrow ϕ -weights:

S-coloured diagram
$$D \longmapsto \sum_{a \leftarrow} \pm \varphi(a, b)$$

This is an invariant of coloured diagrams iff





Thm: one has a cochain complex $(Map(S^{\times k}, \mathbb{Z}_n), d_R^k)$,

$$(d_{R}^{k}f)(\alpha_{1},...,\alpha_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i-1} (f(\alpha_{1},...,\alpha_{i-1},\alpha_{i+1},...,\alpha_{k+1})$$

$$-f(\alpha_{1} \triangleleft \alpha_{i},...,\alpha_{i-1} \triangleleft \alpha_{i},\alpha_{i+1},...,\alpha_{k+1})).$$

Thm: one has a cochain complex $(Map(S^{\times k}, \mathbb{Z}_n), d_{\scriptscriptstyle R}^k)$,

$$(d_R^k f)(\alpha_1, \dots, \alpha_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i-1} (f(\alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_{k+1})$$

$$- f(\alpha_1 \lhd \alpha_i, \dots, \alpha_{i-1} \lhd \alpha_i, \alpha_{i+1}, \dots, \alpha_{k+1})).$$

 \rightsquigarrow Rack cohomology $H_R^k(S, \mathbb{Z}_n)$.

Thm: one has a cochain complex $(Map(S^{\times k}, \mathbb{Z}_n), d_{\scriptscriptstyle R}^k)$,

$$(d_R^k f)(\alpha_1, \dots, \alpha_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i-1} (f(\alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_{k+1})$$

$$- f(\alpha_1 \lhd \alpha_i, \dots, \alpha_{i-1} \lhd \alpha_i, \alpha_{i+1}, \dots, \alpha_{k+1})).$$

 \rightsquigarrow Rack cohomology $H_R^k(S, \mathbb{Z}_n)$.

 $d_R^2 \varphi = 0 \implies \varphi$ refines (positive) braid colouring invariants. $\varphi = d_P^1 \psi \implies$ the refinement is trivial. **Thm**: one has a cochain complex $(\mathsf{Map}(S^{\times k},\mathbb{Z}_n),d_{\scriptscriptstyle R}^k),$

$$(d_R^k f)(\alpha_1, \dots, \alpha_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i-1} (f(\alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_{k+1})$$

$$- f(\alpha_1 \lhd \alpha_i, \dots, \alpha_{i-1} \lhd \alpha_i, \alpha_{i+1}, \dots, \alpha_{k+1})).$$

 \sim Rack cohomology $H_R^k(S, \mathbb{Z}_n)$.

 $d_R^2 \varphi = 0 \implies \varphi$ refines (positive) braid colouring invariants.

$$\phi = d_R^1 \psi \implies$$
 the refinement is trivial.

 (S, \lhd) quandle, $d_R^k \varphi = 0 \& \cdots \Longrightarrow$ powerful invariants of (k-1)-dimensional knots in \mathbb{R}^{k+1} .

9 New bridges

Thm: one has a cochain complex $(\mathsf{Map}(S^{\times k},\mathbb{Z}_n),d_{\scriptscriptstyle R}^k),$

$$(d_R^k f)(\alpha_1, \dots, \alpha_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i-1} (f(\alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_{k+1})$$

$$- f(\alpha_1 \lhd \alpha_i, \dots, \alpha_{i-1} \lhd \alpha_i, \alpha_{i+1}, \dots, \alpha_{k+1})).$$

 \sim Rack cohomology $H_R^k(S, \mathbb{Z}_n)$.

 $d_R^2 \varphi = 0 \implies \varphi$ refines (positive) braid colouring invariants.

 $\varphi = d_{\scriptscriptstyle R}^1 \psi \ \Longrightarrow \ \text{the refinement is trivial}.$

$$(S, \lhd) \text{ quandle, } d_R^k \varphi = 0 \ \& \cdots \implies \\ \text{powerful invariants of } (k-1) \text{-dimensional knots in } \mathbb{R}^{k+1}.$$

Another **application**: pointed Hopf algebra classification (Andruskiewitsch-Graña '03).

Diagram colourings by (S, σ) :

$$\begin{array}{ccc}
b & \searrow a^b & \sigma(a,b) = (b_a, a^b) \\
a & \searrow b_a & \sigma_{\triangleleft}(a,b) = (b, a \triangleleft b)
\end{array}$$

$$\begin{array}{lll} \text{Diagram colourings by } (S,\sigma) \colon & \begin{array}{ccc} & b & & \sigma(a,b) = (b_a,a^b) \\ & \alpha & b_a & & \sigma_{\lhd}(a,b) = (b,a \lhd b) \end{array}$$

RIII-compatibility \iff set-theoretic Yang-Baxter equation:

$$\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \colon S^{\times 3} \to S^{\times 3}$$

$$\sigma_1 = \sigma \times \mathsf{Id}_S, \ \sigma_2 = \mathsf{Id}_S \times \sigma$$

 $\overset{\mathsf{RIII}}{\sim}$

$$\begin{array}{lll} \text{Diagram colourings by } (S,\sigma) \colon & \begin{array}{ccc} b & & \sigma(a,b) = (b_a,a^b) \\ a & & b_a & & \sigma_{\lhd}(a,b) = (b,a \lhd b) \end{array}$$

RIII-compatibility \iff set-theoretic Yang-Baxter equation:

$$\sigma_{1}\sigma_{2}\sigma_{1} = \sigma_{2}\sigma_{1}\sigma_{2} \colon S^{\times 3} \to S^{\times 3}$$

$$\sigma_{1} = \sigma \times Id_{S}, \ \sigma_{2} = Id_{S} \times \sigma$$

$$RIII$$

$$\sim$$

6 Vladimir Drinfel'd, a divider-and-conqueror.

Example: $\sigma(x, y) = (y, x)$ $\sim \sim \sim \sim$ R-matrices.

Diagram colourings by
$$(S, \sigma)$$
:
$$\begin{array}{ccc}
b & & \sigma(a, b) = (b_a, a^b) \\
a & & b_a & & \sigma_{<}(a, b) = (b, a < b)
\end{array}$$

Diagram colourings by
$$(S, \sigma)$$
:
$$\begin{array}{ccc}
b & & \sigma(a, b) = (b_a, a^b) \\
a & & b_a & & \sigma_{< 1}(a, b) = (b, a < b)
\end{array}$$

Thm (*Soloviev & Lu-Yan–Zhu* '00, *L.–Vendramin* '17):

✓ A left non-degenerate set-theoretic YBE solution (S, σ) is a shelf:

$$a \longrightarrow b \qquad a \triangleleft_{\sigma} b$$

$$a \xrightarrow{a^b} b_a$$

Diagram colourings by
$$(S, \sigma)$$
:
$$\begin{array}{ccc}
b & & \sigma(a, b) = (b_a, a^b) \\
a & & b_a & & \sigma_{\triangleleft}(a, b) = (b, a \triangleleft b)
\end{array}$$

Thm (*Soloviev & Lu-Yan–Zhu* '00, *L.–Vendramin* '17):

✓ A left non-degenerate set-theoretic YBE solution (S, σ) is a shelf:

$$_{a}\nearrow \searrow _{b} ,_{a\vartriangleleft _{\sigma }b}$$

- $\checkmark \triangleleft_{\sigma_{\triangleleft}} = \triangleleft.$
- \checkmark ⊲_σ captures major properties of σ.

Diagram colourings by
$$(S, \sigma)$$
:
$$\begin{array}{ccc} b & & \sigma(a, b) = (b_a, a^b) \\ a & & b_a & & \sigma_{\lhd}(a, b) = (b, a \lhd b) \end{array}$$

Thm (*Soloviev & Lu-Yan–Zhu* '00, *L.–Vendramin* '17):

✓ A left non-degenerate set-theoretic YBE solution (S, σ) is a shelf:

$$_{\alpha}\nearrow \searrow _{b} ,_{\alpha \vartriangleleft _{\sigma} b}$$

- $\checkmark \triangleleft_{\sigma_{\triangleleft}} = \triangleleft.$
- \checkmark ⊲_σ captures major properties of σ.
- ✓ Bad news: σ and \triangleleft_{σ} induce isomorphic B_n^+ -actions on S^n .

Getting symmetric

$$\begin{array}{lll} \text{Diagram colourings by } (S,\sigma) \colon & \begin{array}{ccc} b & & \sigma(a,b) = (b_a,a^b) \\ a & & b_a & & \sigma_{\lhd}(a,b) = (b,a \lhd b) \end{array}$$

Question: New colouring invariants of braids?

Thm (*Soloviev & Lu-Yan–Zhu* '00, *L.–Vendramin* '17):

✓ A left non-degenerate set-theoretic YBE solution (S, σ) is a shelf:

$$\underset{a}{\overbrace{\hspace{1em}}}\underset{b}{\overleftarrow{\hspace{1em}}}\underset{a\vartriangleleft_{\sigma}}{\overleftarrow{\hspace{1em}}}_{b}$$

- $\checkmark \triangleleft_{\sigma_{\triangleleft}} = \triangleleft.$
- \checkmark ⊲_σ captures major properties of σ.
- ✓ Bad news: σ and \triangleleft_{σ} induce isomorphic B_n^+ -actions on S^n .

A better question: New color-and-weight invariants of braids?

Diagram colourings by
$$(S, \sigma)$$
:

Diagram colourings by
$$(S,\sigma)$$
:
$$\begin{array}{ccc} b & & \sigma(a,b) = (b_a,a^b) \\ a & & b_a & & \sigma_{\lhd}(a,b) = (b,a \lhd b) \end{array}$$

Thm (*Soloviev & Lu-Yan–Zhu* '00, *L.–Vendramin* '17):

✓ A left non-degenerate set-theoretic YBE solution (S, σ) is a shelf:

$$a \rightarrow b \qquad a \triangleleft_{\sigma} b$$

- $\checkmark \triangleleft_{\sigma_{\triangleleft}} = \triangleleft.$
- \checkmark ⊲_σ captures major properties of σ.
- ✓ Bad news: σ and \triangleleft_{σ} induce isomorphic B_n^+ -actions on S^n .

A better question: New color-and-weight invariants of braids?

Here "weight" = a ϕ -weight for a braided 2-cocycle ϕ .

1) $d_{\scriptscriptstyle Br}^2\varphi=0 \implies \varphi$ refines (positive) braid colouring invariants. $\varphi=d_{\scriptscriptstyle Br}^1\psi\implies$ the refinement is trivial. (Carter-Elhamdadi-Saito '04)

1) $d_{Br}^2 \phi = 0 \implies \phi$ refines (positive) braid colouring invariants.

 $\phi = d_{Br}^1 \psi \implies$ the refinement is trivial.

(Carter-Elhamdadi-Saito '04)

k-cocycles \sim invariants of (k-1)-dimensional knots in \mathbb{R}^{k+1} .

1) $d_{Br}^2 \phi = 0 \implies \phi$ refines (positive) braid colouring invariants.

$$\phi = d_{Br}^1 \psi \implies$$
 the refinement is trivial.

(Carter-Elhamdadi-Saito '04)

k-cocycles \sim invariants of (k-1)-dimensional knots in \mathbb{R}^{k+1} .

2)
$$d_{Br}^2 \phi = 0 \implies$$
 diagonal deformations of σ : $\sigma_q(a,b) = q^{\varphi(a,b)} \sigma(a,b)$. (*Freyd–Yetter* '89, *Eisermann* '05)

- 1) $d_{Br}^2 \phi = 0 \implies \phi$ refines (positive) braid colouring invariants.
 - $\phi = d_{p}^{1} \psi \implies$ the refinement is trivial.

(Carter-Elhamdadi-Saito '04)

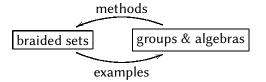
k-cocycles \rightsquigarrow invariants of (k-1)-dimensional knots in \mathbb{R}^{k+1} .

- 2) $d_{Br}^2 \phi = 0 \implies \text{diagonal deformations of } \sigma: \sigma_{\alpha}(\alpha, b) = q^{\varphi(\alpha, b)} \sigma(\alpha, b).$ (Freyd-Yetter '89, Eisermann '05)
- 3) Unifies cohomology theories for
 - ✓ self-distributive structures,
 - ✓ associative structures,
 - ✓ Lie algebras etc.
- + explains parallels between them,
- + suggests theories for new structures.

Vote for braided cohomology!

4) For certain σ , computes the Hochschild cohomology of

$$\mathsf{Mon}(S,\sigma) = \langle \ S \mid ab = b'a' \ \mathsf{whenever} \ \sigma(a,b) = (b',a') \ \rangle$$



11 Vote for braided cohomology!

4) For certain σ , computes the Hochschild cohomology of

$$\mathsf{Mon}(S,\sigma) = \langle \; S \mid \alpha b = b' \alpha' \; \mathsf{whenever} \; \sigma(\alpha,b) = (b',\alpha') \; \rangle$$

Thm: $\sigma^2 = Id \& ... \Longrightarrow$

- ✓ Mon(S, σ) is of I-type, cancellative, Ore;
- ✓ $Grp(S, \sigma)$ is solvable, Garside;
- ✓ \mathbb{k} Mon (S, σ) is Koszul, noetherian, Cohen–Macaulay,

Artin-Schelter regular

(Manin, Gateva-Ivanova & Van den Bergh, Etingof–Schedler–Soloviev, Jespers–Okniński, Chouraqui ..., 80'-...).

4) Braided cohomology computes the Hochschild cohomology of

$$\mathsf{Mon}(S,\sigma) = \langle \ S \mid \mathfrak{ab} = \mathfrak{b'a'} \ \mathsf{whenever} \ \sigma(\mathfrak{a},\mathfrak{b}) = (\mathfrak{b'},\mathfrak{a'}) \ \rangle$$

when:

✓
$$\sigma \sigma = Id$$
 and Char $k = 0$ (Farinati & García-Galofre '16);

 $\checkmark \sigma \sigma = \sigma (L. '16).$

4) Braided cohomology computes the Hochschild cohomology of

$$\mathsf{Mon}(S,\sigma) = \langle \ S \mid \mathfrak{ab} = \mathfrak{b'a'} \ \mathsf{whenever} \ \sigma(\mathfrak{a},\mathfrak{b}) = (\mathfrak{b'},\mathfrak{a'}) \ \rangle$$

when:

- ✓ $\sigma \sigma = Id$ and Char k = 0 (Farinati & García-Galofre '16);
- $\checkmark \sigma \sigma = \sigma (L. '16).$

Applications:

factorised monoids G = HK;

4) Braided cohomology computes the Hochschild cohomology of

$$\mathsf{Mon}(S,\sigma) = \langle \ S \mid \mathfrak{a}\mathfrak{b} = \mathfrak{b}'\mathfrak{a}' \ \mathsf{whenever} \ \sigma(\mathfrak{a},\mathfrak{b}) = (\mathfrak{b}',\mathfrak{a}') \ \rangle$$

when:

- $\checkmark \sigma \sigma = Id$ and Char k = 0 (Farinati & García-Galofre '16);
- $\checkmark \sigma \sigma = \sigma (L. '16).$

Applications:

factorised monoids G = HK:

Young tableaux with Schensted multiplication.

$$\mathsf{Mon}(S,\sigma) = \langle \ S \mid \mathfrak{ab} = \mathfrak{b}'\mathfrak{a}' \ \mathsf{whenever} \ \sigma(\mathfrak{a},\mathfrak{b}) = (\mathfrak{b}',\mathfrak{a}') \ \rangle$$

when:

✓
$$\sigma \sigma = Id$$
 and Char $k = 0$ (Farinati & García-Galofre '16);

$$\checkmark \sigma \sigma = \sigma (L. '16).$$

Applications:

factorised monoids G = HK;

Young tableaux with Schensted multiplication.

Question: What about the general σ ?

$$\mathsf{Mon}(\mathsf{S},\sigma) = \langle \ \mathsf{S} \ | \ \mathsf{ab} = \mathsf{b}'\mathsf{a}' \ \mathsf{whenever} \ \sigma(\mathsf{a},\mathsf{b}) = (\mathsf{b}',\mathsf{a}') \ \rangle$$

when:

✓
$$\sigma\sigma = Id$$
 and Char $k = 0$ (Farinati & García-Galofre '16);

$$\checkmark \sigma \sigma = \sigma (L. '16).$$

Applications:

factorised monoids G = HK;

Young tableaux with Schensted multiplication.

Question: What about the general σ ?

5) Comes with a graphical calculus, based on branched braids.