Applications of self-distributivity to Yang-Baxter operators and their cohomology

Victoria LEBED, Trinity College Dublin (Ireland)

Busan, June 2017

1 Coloring invariants for braids

Self-distributivity: $(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$

Diagram colorings by (S, \lhd) ba $\lhd b$ for positive braids:ab

 $\mathsf{End}(S^n) \leftarrow B_n^+ \qquad \mathsf{RIII} \qquad (a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$

$$\overline{\mathfrak{a}} \xrightarrow{\beta} (\overline{\mathfrak{a}})\beta$$

Coloring invariants for braids

$End(S^n) \leftarrow B_n^+$	RIII	$(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$	shelf
$\operatorname{Aut}(S^n) \leftarrow B_n$	& RII	$\forall b, a \mapsto a \lhd b \text{ invertible}$	rack
$S \hookrightarrow (S^n)^{B_n}$		$a \lhd a = a$	quandle
$a \mapsto (a, \ldots, a)$			·

~ 1 Coloring invariants for braids

. . .

$End(S^n) \leftarrow B_n^+$	RIII	$(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$	shelf
$\operatorname{Aut}(S^n) \leftarrow B_n$	& RII	$\forall b, a \mapsto a \lhd b \text{ invertible}$	rack
$S \hookrightarrow (S^n)^{B_n}$		$a \lhd a = a$	quandle
$a\mapsto (a,\ldots,a)$			

Examples:

S	$a \lhd b$	(S, \lhd) is a	in braid theory
$\mathbb{Z}[t^{\pm 1}]$ Mod	ta + (1-t)b	quandle	(red.) Burau: $B_n \to GL_n(\mathbb{Z}[t^{\pm}])$
	n		
	•••		
	$\rho_{B}($	$= I_{i-1} \oplus \begin{pmatrix} 1 \\ \end{pmatrix}$	$ \begin{pmatrix} -t & 1 \\ t & 0 \end{pmatrix} \oplus I_{n-i-1} $

1 Coloring invariants for braids

$End(S^n) \gets B_n^+$	RIII	$(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$	shelf
$\operatorname{Aut}(S^n) \leftarrow B_n$	& RII	$\forall b, a \mapsto a \lhd b \text{ invertible}$	rack
$S \hookrightarrow (S^n)^{B_n}$		$a \lhd a = a$	quandle
$a \mapsto (a, \ldots, a)$			

Examples:

S	S $a \lhd b$ (S, \lhd) is a in braid theor		in braid theory
$\mathbb{Z}[t^{\pm 1}]$ Mod	ta + (1-t)b	quandle	(red.) Burau: $B_n \to GL_n(\mathbb{Z}[t^{\pm}])$
group	b ⁻¹ ab	quandle	$Artin: \ B_n \hookrightarrow Aut(F_n)$
twisted linear quandle		Lawrence-Krammer-Bigelow	
Z	a + 1	rack	$lg(w), lk_{i,j}$
free shelf		Dehornoy: order on B _n	
Laver tables		???	

2 Coloring counting invariants for knots

a ⊲ a h ∩	RI	a 🦳	RI	a to
a X		a		a ⊲ a ∕Ú

pos. braids	RIII	$(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$	shelf
braids	& RII	$\forall b, a \mapsto a \lhd b \text{ invertible}$	rack
knots & links	& RI	$a \lhd a = a$	quandle

2 Coloring counting invariants for knots

Theorem (*Joyce & Matveev* '82):

✓ The number of colorings of a diagram D of a knot K by a quandle (S, \triangleleft) yields a knot invariant.

- $\checkmark \# Col_{S, \triangleleft}(D) = \# Hom_{Quandle}(Q(K), S) = Tr(\rho_S(\beta))$
 - Q(K) = fundamental quandle of K

(a weak universal knot invariant);

- closure(β) = K;
- $\rho_S \colon B_n \to Aut(S^n)$ is the S-coloring invariant for braids.

3 Enhancing invariants: weights

Fenn-Rourke-Sanderson'95 & Carter-Jelsovsky-Kamada-Langford-Saito'03:

Shelf S, $\phi: S \times S \to \mathbb{Z}_n \longrightarrow \phi$ -weights:

The multi-set of weights yields a braid invariant iff

 $\phi(a,b) + \phi(a \triangleleft b,c) + \phi(b,c) = \phi(b,c) + \phi(a,c) + \phi(a \triangleleft c, b \triangleleft c)$

and a knot invariant if moreover $\phi(a, a) = 0$.

3 Enhancing invariants: weights

These ϕ -weights strengthen coloring invariants.

Example: $S = \{0, 1\}, a \triangleleft b = a,$

 $\phi(0, 1) = 1$ and $\phi(a, b) = 0$ elsewhere.

Conjecture (*Clark–Saito–…*):

Finite quandle cocycle invariants distinguish all knots.

More generally, this approach works for knottings $K^{n+1} \hookrightarrow \mathbb{R}^{n+1}$.

4 Self-distributive cohomology

$$C_{R}^{k}(S, \mathbb{Z}_{n}) = Map(S^{\times k}, \mathbb{Z}_{n}),$$

$$(d_{R}^{k}f)(a_{1}, \dots, a_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i-1}(f(a_{1}, \dots, \widehat{a_{i}}, \dots, a_{k+1}))$$

 $-f(a_1 \triangleleft a_i, \dots, a_{i-1} \triangleleft a_i, a_{i+1}, \dots, a_{k+1}))$

 \rightsquigarrow Rack cohomology $H^k_{R}(S, \mathbb{Z}_n)$.

Applications:

(1) (Higher) braid and knot invariants:

 $\begin{array}{l} d_{\scriptscriptstyle R}^2\varphi=0 \implies \varphi \text{ refines (positive) braid coloring invariants,} \\ \varphi=d_{\scriptscriptstyle R}^1\psi \implies \text{ the refinement is trivial.} \end{array}$

(2) Hopf algebra classification (Andruskiewitsch-Graña '03).

3 Rack/quandle extensions, deformations etc.

5 Upper strands matter

Diagram colorings by (S, σ) : $b \rightarrow a^{b} = \sigma(a, b) = (b_{a}, a^{b})$ $b_{a} = Ex.: \sigma \triangleleft (a, b) = (b, a \triangleleft b)$

RIII-compatibility \iff set-theoretic Yang-Baxter equation:

 $\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \colon S^{\times 3} \to S^{\times 3} \qquad \sigma_1 = \sigma \times \mathsf{Id}_S, \ \sigma_2 = \mathsf{Id}_S \times \sigma$

Example: $\sigma(a, b) = (b, a)$ \longrightarrow R-matrices.

5 Upper strands matter

Diagram colorings by (S, σ) : $b \rightarrow a^{b} = \sigma(a, b) = (b_{a}, a^{b})$ $b_{a} = Ex.: \sigma \triangleleft (a, b) = (b, a \triangleleft b)$

RIII-compatibility \iff set-theoretic Yang-Baxter equation:

 $\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \colon S^{\times 3} \to S^{\times 3} \qquad \sigma_1 = \sigma \times \mathsf{Id}_S, \, \sigma_2 = \mathsf{Id}_S \times \sigma$

Exotic example: $\sigma(a, b) = (b, a)$ \longrightarrow $\sigma_{Lie}(a \otimes b) = b \otimes a + \hbar 1 \otimes [a, b]$, where [1, a] = [a, 1] = 0:

 $\left[\mathsf{YBE for } \sigma_{\mathsf{Lie}} \qquad \Longleftrightarrow \qquad \mathsf{Leibniz relation for } [] \right]$

Very exotic example: $\sigma_{Ass}(a, b) = (a * b, 1)$, where 1 * a = a:

YBE for $\sigma_{Ass} \iff \text{associativity for } *$

5 Upper strands matter

Diagram colorings by (S, σ) : $b \rightarrow a^{b} = \sigma(a, b) = (b_{a}, a^{b})$ $b_{a} = Ex.: \sigma_{\triangleleft}(a, b) = (b, a \triangleleft b)$

RIII	$\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$	YB operator	
8. DH	σ invertible &	birack	
α KII	$\forall b, a \mapsto a^b$ and $a \mapsto a_b$ invertible		
& RI	∃ a bijection t	biguandle	
	such that $\sigma(t(a), a) = (t(a), a)$	biquantite	

Result: Coloring invariants of braids and knots.

Bad news: These invariants give nothing new!

Unrelated question: Describe free biracks and biquandles.

6 From biracks to racks

Thm (Soloviev & Lu-Yan-Zhu'00, L.-Vendramin'17):

✓ Birack (S, σ) → its structure rack (S, \lhd_{σ}) :

✓ This is a projection **Birack** → **Rack** along involutive biracks:

•
$$\triangleleft_{\sigma_{\triangleleft}} = \triangleleft;$$

• \lhd_{σ} trivial $\iff \sigma^2 = Id.$

The structure rack remembers a lot about the birack:

- (S, \lhd_{σ}) quandle \iff (S, σ) biquandle;
- σ and \triangleleft_{σ} induce isomorphic B_n -actions on S^n

 \Rightarrow same braid and knot invariants.

6 From biracks to racks

Operation \lhd_{σ} is self-distributive:

 $\mathbf{Ex.:}\ \sigma_{Ass}(a,b)=(ab,1) \quad \rightsquigarrow \quad J(a,b,c)=(a,ab,abc).$

 $\textbf{Ex.:} \ \sigma_{SD}(a,b) = (b \lhd a,a) \quad \rightsquigarrow \quad J(a,b,c) = (a,b \lhd a, (c \lhd b) \lhd a).$

Ex.: $\sigma^2 = Id \quad \rightsquigarrow \quad \Omega$ from right-cyclic calculus.

$$J: S^{\times n} \xrightarrow{1:1} S^{\times n},$$

$$x_n, \dots, x_1) \longmapsto (\dots, (x_3)_{x_2x_1}, (x_2)_{x_1}, x_1)$$

Proposition: $J\sigma_i = \sigma'_i J$. $\sigma: \begin{array}{c} b \\ a \end{array} \xrightarrow{a^b} \begin{array}{c} a^b \\ b_a \end{array} = \sigma': \begin{array}{c} b \\ a \end{array} \xrightarrow{a \sigma b} \begin{array}{c} b \\ b \end{array}$

Corollary: Same B_n-actions and knot invariants.

 \land (S, σ) \ncong (S, σ') as biracks!

8 Braided cohomology

 $\rightsquigarrow \text{ Braided cohomology } H^k_{\scriptscriptstyle Br}(S, \mathbb{Z}_n).$

9 Why I like braided cohomology

(1) (Higher) braid and knot invariants:

 $\begin{array}{l} d^2_{\mbox{\tiny Br}}\varphi=0 \implies \varphi \mbox{ refines (positive) braid coloring invariants,} \\ \varphi=d^1_{\mbox{\tiny Br}}\psi \implies \mbox{ the refinement is trivial.} \end{array}$

Question: New invariants?

Answer: I don't know!

9 Why I like braided cohomology

3 Unifies cohomology theories for

- ✓ self-distributive structures
- ✓ associative structures
- ✓ Lie algebras

 $\sigma_{SD}(a,b) = (b \lhd a,a)$

 $\sigma_{Ass}(a,b) = (a * b, 1)$

 $\sigma_{Lie}(a\otimes b)=b\otimes a+\hbar 1\otimes [a,b]$

.....

+ explains parallels between them,

+ suggests theories for new structures.

Why I like braided cohomology

(4) For certain σ , computes the group cohomology of

 $Grp(S,\sigma) = \langle S \mid ab = b_a a^b, \text{ where } \sigma(a,b) = (b_a, a^b) \rangle$

Example: $-\operatorname{Grp}(S, \sigma_{SD}) = \langle S \mid a b = b (a \triangleleft b) \rangle = As(S, \triangleleft).$

Applications: Cohomology of factorized groups & plactic monoids.

Rmk: $Grp(S, \sigma)$ -modules are coefficients for braided cohomology ("walls").

Rmk: Structure racks know a lot about structure groups.

10 Flying saucer cohomology

10/ Flying saucer cohomology

Sideways maps:
a
$$\stackrel{a \cdot b}{\swarrow}_{b}$$

Fenn-Rourke-Sanderson '93, Ceniceros-Elhamdadi-Green-Nelson '14:

$$\begin{split} C^k_{\text{Bir}}(S,\mathbb{Z}_n) &= \text{Map}(S^{\times k},\mathbb{Z}_n), \\ (d^k_{\text{Bir}}f)(a_1,\ldots,a_{k+1}) &= \sum_{i=1}^{k+1} (-1)^{i-1} (f(a_1,\ldots,\widehat{a_i},\ldots,a_{k+1})) \\ &\quad -f(a_i \,\widetilde{\cdot}\,a_1,\ldots,a_i \,\widetilde{\cdot}\,a_{i-1},a_i \cdot a_{i+1},\ldots,a_i \cdot a_{k+1})) \end{split}$$

 \rightsquigarrow Birack cohomology $H^k_{\text{Bir}}(S, \mathbb{Z}_n)$.

Normalized subcomplex C_N^k for biquandles: $f(\ldots, a_i, a_i, \ldots) = 0$.

Application: Braid and knot invariants.

10 Guitar map counter-attacks

Thm (L.-Vendramin '17):

✓ Braided and birack cohomologies are the same:

$$J^* \colon (C^{\bullet}_{\scriptscriptstyle\mathsf{Bir}}(S,\mathbb{Z}_n),d^{\bullet}_{\scriptscriptstyle\mathsf{Bir}}) \cong (C^{\bullet}_{\scriptscriptstyle\mathsf{Br}}(S,\mathbb{Z}_n),d^{\bullet}_{\scriptscriptstyle\mathsf{Br}})$$

✓ For biquandles, cohomology decomposes: $C^{\bullet}_{Bir} \cong C^{\bullet}_{N} \oplus C^{\bullet}_{D}$.

Question: Does C_N^{\bullet} determine C_D^{\bullet} ?

Particular cases:

✓ a rack (X, \triangleleft) and its dual $(X, \widetilde{\triangleleft})$ have the same cohomology (folklore);

✓ cohomology decomposition for quandles (*Litherland–Nelson* '03);

- ✓ two forms of group cohomology (folklore);
- ✓ new results for involutive biracks.

Proof: Use a graphical version of d_{Bir}^* & play with diagrams!

