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1 Bricks and mortar

Recall the “bricks and mortar” philosophy for basic functions:

“elementary bricks”: the simplest functions

X c, c ∈ R (constant functions);

X x;

X sin(x);

X ex (exponential function)

“mortar”: operations

X arithmetic operations: f+ g, f− g, fg, f
g ;

X powers: fα, α ∈ R;

X composition: f ◦ g;
X inverse function f−1;

X gluing functions from di�erent pieces (piecewise defined functions).



1 Bricks and mortar

According to this approach, in order lo learn how to compute limits for basic

functions, we need to:

1) compute the limits of the functions c, x, sin(x), ex;

2) understand how limits behave when di�erent operations are

performed on functions.

This is our plan for today.

You will be given two theorems, one for each point above. We will not prove

them, but it can be easily done starting from the ε-δ definition of limits (do

it as an exercise!).

Theorem 1. For any real value a, one has

X lim
x→a

c = c, where c ∈ R;

X lim
x→a

x = a;

X lim
x→a

sin(x) = sin(a).



1 Bricks and mortar

Theorem 2. Suppose that the two limits lim
x→a

f(x) and lim
x→a

g(x) exist (and

are finite). Then

X lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x);

X lim
x→a

(f(x) − g(x)) = lim
x→a

f(x) − lim
x→a

g(x);

X lim
x→a

(f(x)g(x)) = lim
x→a

f(x) lim
x→a

g(x);

X in particular, lim
x→a

(cf(x)) = c lim
x→a

f(x) for any c ∈ R;

X lim
x→a

n
√

f(x) = n

√

lim
x→a

f(x) (provided that for even n, lim
x→a

f(x) > 0);

X lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
whenever lim

x→a
g(x) 6= 0.

Further, suppose that lim
x→a

f(x) = b and lim
x→b

h(x) = c. Then

lim
x→a

h(f(x)) = c.

B For the operation of taking inverse, things are more complicated: one

can have lim
x→a

f(x) = f(a) while lim
x→f(a)

f−1(x) does not exist.



2 Limits for polynomial functions

The first class of functions we studied in detail were polynomial functions.

Since they are obtained from constant functions and f(x) = x using only

addition and multiplication, the two theorems above yield:

lim
x→a

P(x) = P(a) for any polynomial P and any real a.

So, to compute the limit of a polynomial function at a, you simply evaluate

it at a.

Examples.

lim
x→1

(x3 − 5x + 1) = 1− 5+ 1 = −3;

lim
y→1

(y3 − 3y + 1)5 = (1− 3+ 1)5 = −1.



3 Limits for rational functions

Next, we studied rational functions. They are obtained from polynomial

functions using division, and can be wri�en as
P(x)
Q(x) , where P and Q are

polynomials. For rational functions, the two theorems above yield:

lim
x→a

P(x)
Q(x)

=
P(a)

Q(a)
for any polynomials P andQ and any real a such that

Q(a) 6= 0.

Again, to compute such limits, you simply evaluate the function.

With some more work, one proves the following statement:

lim
x→a±

P(x)
Q(x)

= +∞ or −∞ for any polynomials P andQ and any real a such

that P(a) 6= 0, Q(a) = 0.

The choice between +∞ and −∞ depends on the signs of P andQ for x

close to a.



3 Limits for rational functions

lim
x→a

P(x)
Q(x)

=
P(a)

Q(a)
for any polynomials P andQ and any real a such that

Q(a) 6= 0.

lim
x→a±

P(x)
Q(x)

= +∞ or −∞ for any polynomials P andQ and any real a such

that P(a) 6= 0, Q(a) = 0.

Examples. lim
x→0

x2−4x+4
x2−4

= 4
−4 = −1.

lim
x→(−2)+

x2−4x+4
x2−4

= −∞, since (−2)2 − 4(−2) + 4 = 16 > 0,

(−2)2 − 4 = 0, and x2 − 4 < 0 for −2 < x < 0.

lim
x→(−2)−

x2−4x+4
x2−4

= +∞, since (−2)2 − 4(−2) + 4 = 16 > 0,

(−2)2 − 4 = 0, and x2 − 4 > 0 for x < −2.

The function does not have a finite or infinite two-sided limit at −2.



4 Indeterminate forms

Examples. At point 2, one has

lim
x→2

x2 − 4x+ 4 = lim
x→2

x2 − 4 = 0.

So, the evaluation approach to lim
x→2

x2−4x+4
x2−4

would give 0
0 , which does not

make sense!

Definition. Fractions
f(x)
g(x)

where f(a) = g(a) = 0 are called

indeterminate forms of type 0/0 at a.

Limits are particularly useful for studying indeterminate forms. Such forms

may have a finite limit, an infinite limit, or no limit at all.

In general, it might be very di�icult to describe the behaviour of an

indeterminate form. But for the particular case of rational functions, there

is an easy algorithm:



4 Indeterminate forms

Suppose that P and Q are polynomials, and P(a) = Q(a) = 0 for some real

a. To compute lim
x→a

P(x)
Q(x)

,

1) Divide both P andQ by x− a, to get polynomials P2 and Q2 (this is

possible since P(a) = Q(a) = 0).

2) If P2(a) = Q2(a) = 0, repeat Steps 1)-2) for P2 and Q2.

2) IfQ2(a) 6= 0, then lim
x→a

P(x)
Q(x)

=
P2(a)

Q2(a)
.

2) IfQ2(a) = 0, P2(a) 6= 0, then the one-sided limits of
P(x)
Q(x)

at a are

±∞, depending on the signs of P2(x) and Q2(x) for x close to a. The

two-sided limit is ±∞ if the one-sided limits have the same sign; neither

finite nor infinite limit exists otherwise.

In Step 1) you can divide by higher powers (x− a)k, if you see a power that

will work.



4 Indeterminate forms

Examples.

lim
x→2

x2 − 4x+ 4

x2 − 4
= lim

x→2

(x− 2)2

(x− 2)(x + 2)
= lim

x→2

x− 2

x+ 2
=

2− 2

2+ 2
= 0.

lim
x→1

x2 − 4x+ 3

x2 − 3x+ 2
= lim

x→1

(x− 1)(x − 3)

(x− 1)(x − 2)
= lim

x→1

x− 3

x− 2
=

1− 3

1− 2
= 2.

lim
x→3

x2 − 4x+ 3

x2 − 6x+ 9
= lim

x→3

(x− 1)(x − 3)

(x− 3)2
= lim

x→3

x− 1

x− 3
, the limit does not

exist.

lim
x→3+

x2 − 4x+ 3

x2 − 6x+ 9
= lim

x→3+

x− 1

x− 3
= +∞,

lim
x→3−

x2 − 4x+ 3

x2 − 6x+ 9
= lim

x→3−

x− 1

x− 3
= −∞.

So,
x2 − 4x + 3

x2 − 6x + 9
does not have an infinite two-sided limit at 3 either.

lim
x→0

x3 − 4x2

x4
= lim

x→0

x2(x− 4)

x4
= lim

x→0

x− 4

x2
= −∞.



5 Limits for algebraic functions

Recall that algebraic functions are obtained from constant functions and

f(x) = x using addition, multiplication, division, and taking roots of any

degree. Their limits can be computed by evaluation if this does not involve

division by 0. If division by 0 does occur, you may need a very subtle

analysis of the function.

Examples.

lim
x→1−

x√
1+ x−

√
1− x

=
1√

1+ 1−
√
1− 1

=
1√
2
.

Note that lim
x→1+

x√
1+ x−

√
1− x

does not make sense, since
√
1− x is not

defined for x > 1.



5 Limits for algebraic functions

lim
x→0

x√
1+ x−

√
1− x

: here we have an indeterminate form of type 0/0.

It can be solved by rationalising the denominator:

lim
x→0

x√
1+ x−

√
1− x

= lim
x→0

x(
√
1+ x+

√
1− x)

(
√
1+ x−

√
1− x)(

√
1+ x+

√
1− x)

= lim
x→0

x(
√
1+ x+

√
1− x)

(1+ x) − (1− x)

= lim
x→0

x(
√
1+ x+

√
1− x)

2x

= lim
x→0

√
1+ x+

√
1− x

2

=

√
1+ 0+

√
1− 0

2
= 1.

Here at all stages we had functions well defined for x close to 0, so we had

the right to perform all the algebraic operations.


