Lecture 8: The notion of limit

Victoria LEBED, lebed@maths.tcd.ie

MA1S11A: Calculus with Applications for Scientists

October 20, 2017

1 You have already encountered limits!

Today we are starting to talk about **limits** and **continuity**, two key notions in this module.

We have already worked with them implicitly in many situations:

- \checkmark when we plotted the graphs of functions with "holes" (jumps, cuts etc.);
- ✓ when we determined asymptotes (vertical, horizontal, oblique) for rational functions;
- ✓ when we showed that the behaviour of a polynomial $c_n x^n + c_{n-1} x^{n-1} + \cdots + c_1 x + c_0$ for large |x| is essentially the same as the behaviour of its leading term $c_n x^n$.

2 Infinite decimals

You have also been using limits when writing things like

 $\frac{1}{3} = 0.333333333\dots$

This expression actually means the following: The numbers 0.3, 0.33, 0.333, 0.3333 etc. get closer and closer to $\frac{1}{3}$.

Similarly, when writing

 $\pi = 3.14159265...,$

we mean that the numbers 3, 3.1, 3.14 etc. approximate the number π better and better.

Limits provide a way of working with approximations in a mathematically rigorous manner.

3 Limits informally

Informal definition. A function f is said to have the limit L as x **approaches** a if the values f(x) get as close as we wish to L when x gets sufficiently close to a. In this case, one writes

$$\lim_{x \to a} f(x) = L, \qquad \text{or} \qquad f(x) \xrightarrow[x \to a]{} L$$

The last notation can be read "f(x) approaches L when x approaches a".

We say that **the limit of a function** f **at** a **does not exist** if there is no L satisfying $\lim_{x\to a} f(x) = L$.

 \bigwedge The definition asks nothing about f(a), the value of f at the point a itself. This point does not even have to lie in the domain of f!

3 Limits informally

Example. Let us examine the limit $\lim_{x\to 1} \frac{x-1}{\sqrt{x-1}}$.

Values for x getting closer to 1 from the left (i.e., x < 1):

x	0.99	0.999	0.9999	0.99999
f(x)	1.994987	1.999500	1.999950	1.999995

Values for x getting closer to 1 from the right (i.e., x > 1):

x	1.00001	1.0001	1.001	1.01
f(x)	2.000005	2.000050	2.000500	2.004988

From this data, it is natural to guess that $\lim_{x\to 1} \frac{x-1}{\sqrt{x-1}} = 2$.

But it is only a guess: one has to check that f(x) approaches 2 for all x approaching 1, not just for a couple of values of x.

Limits informally

A more systematic approach is to simplify our expression for f:

$$\frac{x-1}{\sqrt{x}-1} = \frac{(\sqrt{x})^2 - 1}{\sqrt{x}-1} = \frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}-1} = \sqrt{x}+1$$

for $x \neq 1$. We have the right to write $x = (\sqrt{x})^2$ for x close to 1 (more precisely, for $x \ge 0$).

So, $\frac{x-1}{\sqrt{x-1}} = \sqrt{x} + 1$ is close to $\sqrt{1} + 1 = 2$ for x close to 1. (Recall that the value of f at 1 does not matter!)

Conclusion: $\lim_{x \to 1} \frac{x+1}{\sqrt{x-1}} = 2.$

for x

In many life situations, this level of rigour is sufficient. However, for certain functions we will need a more precise notion of limit.

A Beware of bad samplings!

It is very important that the same qualitative behaviour is observed for all x close to a. In the figure below, depending on sampling values of x we may get the limit value

- $\sqrt{-1}$ as x approaches 0 following the blue dots;
- $\sqrt{-1}$ as x approaches 0 following the red dots.
- Since $1 \neq -1$, the limit of this function at 0 does not exist.

5 Limits formally

Definition. Suppose that f is defined on an open interval containing the number a, except possibly for x = a. (That is, on $(b, a) \cup (a, c)$ for some b < a < c.) We say that f **has the limit** L **at** a, and write $\lim_{x \to a} f(x) = L$, if for any $\varepsilon > 0$, we can find a $\delta = \delta(\varepsilon) > 0$ such that $|f(x) - L| < \varepsilon$ whenever $0 < |x - a| < \delta$.

Observe that $|f(x) - L| < \varepsilon$ means that f(x) is in $(L - \varepsilon, L + \varepsilon)$.

Also, $0 < |x - a| < \delta$ means that x is in $(a - \delta, a) \cup (a, a + \delta)$. We emphasize that no information is needed about the value at x = a.

The requirement from the definition can be rewritten as f(x) is ε -close to L \leftarrow x is δ -close to a.

One recognises our earlier informal definition:

f(x) get as close as we wish to L when x gets sufficiently close to a.

5 Limits formally

Example. Let us prove formally that $\lim_{x\to 0} x^2 = 0$ (even though intuitively it is absolutely clear).

We are required to find, given $\varepsilon > 0$, a $\delta > 0$ so that $|x^2 - 0| < \varepsilon \iff 0 < |x - 0| < \delta.$

Discovery phase: If we know that $|x^2| < \varepsilon$, we can replace $|x^2|$ by the equal number $|x|^2$, and conclude that $|x|^2 < \varepsilon$, so $|x| < \sqrt{\varepsilon}$. This suggests that $\delta(\varepsilon) = \sqrt{\varepsilon}$ should work.

Proof phase: Suppose that we take the value of δ we discovered, $\delta = \sqrt{\varepsilon}$. Let us prove that it fits the purpose we have for it. Assume that $0 < |x| < \delta$. Then

$$|x^2| = |x|^2 < \delta^2 = (\sqrt{\epsilon})^2 = \epsilon,$$

as required.

The previous example was there just for your information: proofs like that are frequently done in maths and theoretical physics, but for our purposes it is usually enough to know that things can be made rigorous.

17th century: Newton and Leibniz start the differential and integral calculus

150 years

19th century: Weierstrass treats limits rigorously, and introduces the ϵ - δ machinery.

For our purposes, a good intuitive sense of what having a limit means is usually quite sufficient. We shall formulate a range of theorems about limits to use in applications, but mostly restricting ourselves to intuitive informal proofs, like the one from the "informal" example above.

One-sided limits

Definition. A function f is said to have the limit L as x approaches a from the right if the values f(x) get as close as we wish to L when x gets sufficiently close to a while staying greater than a. In this case, one writes $\lim_{x \to a^+} f(x) = L, \quad \text{or} \quad f(x) \xrightarrow[x \to a^+]{} L.$

A function f is said to have the limit L as x approaches a from the left if the values f(x) get as close as we wish to L when x gets sufficiently close to a while staying smaller than a. In this case, one writes $\lim_{x \to a^-} f(x) = L, \quad \text{or} \quad f(x) \xrightarrow[x \to a^-]{} L.$

Exercise. Give a formal definition of one-sided limits.

A simple function for which we need one-sided limits is

Since for all x > 0 this function assumes the value 1, and for all x < 0 this function assumes the value -1, we have

$$\lim_{x\to 0^-} \operatorname{sign}(x) = -1, \quad \lim_{x\to 0^+} \operatorname{sign}(x) = 1.$$

7 One-sided limits

Theorem. Given a function f and a point a, one has

 $\lim_{x \to a} f(x) = L \quad \iff \quad \lim_{x \to a^-} f(x) = L = \lim_{x \to a^+} f(x).$

In words, L is the limit of f at a iff L is both its right and its left limit at a. *Exercise.* Prove it.

In the previous example, we had $\lim_{x\to 0^-} \operatorname{sign}(x) = -1$ and $\lim_{x\to 0^+} \operatorname{sign}(x) = 1$. So, the function sign does not have a limit at 0.

7 One-sided limits

Let us consider the following three examples:

In each of those examples, we have

$$\lim_{\substack{x \to -1^- \\ x \to -1}} f(x) = 1 \text{ and } \lim_{\substack{x \to -1^+ \\ x \to -1^+}} f(x) = 1$$

This example illustrates the irrelevance of the value at x = a for the limit $\lim_{x \to a} f(x)$.

8 Infinite limits

Definition. A function f is said to have the limit $+\infty$ as x approaches a from the right (left) if the values f(x) increase without bound when x gets sufficiently close to a while staying greater (or smaller) than a. In this case, one writes

$$\lim_{x \to a^{+}} f(x) = +\infty, \quad \text{or} \quad f(x) \xrightarrow[x \to a^{+}]{} +\infty;$$
$$\lim_{x \to a^{-}} f(x) = +\infty, \quad \text{or} \quad f(x) \xrightarrow[x \to a^{-}]{} +\infty.$$

If both are true, one writes $\lim_{x \to a} f(x) = +\infty$.

Informally, you can think of "increasing without bound" as "getting as close as we wish to $+\infty$ ".

A However, avoid treating $\pm \infty$ as a real number. For instance, the expression $|f(x) - (+\infty)|$ doesn't make sense!

$\sqrt{8}$ Infinite limits

Similarly, f is said to have the limit $-\infty$ as x approaches a from the **right (left)** if the values f(x) decrease without bound when x gets sufficiently close to a while staying greater (or smaller) than a. One writes

$$\begin{split} & \lim_{x \to a^+} f(x) = -\infty, \quad \text{or} \quad f(x) \xrightarrow[x \to a^+]{} -\infty; \\ & \lim_{x \to a^-} f(x) = -\infty, \quad \text{or} \quad f(x) \xrightarrow[x \to a^-]{} -\infty. \end{split}$$
 If both are true, one writes $\lim_{x \to a} f(x) = -\infty.$

Exercise. Give a formal definition of infinite limits.

Whenever one of the conditions $\lim_{x \to a^{\pm}} f(x) = \pm \infty$ holds, the function f has a vertical asymptote at a.

 \bigwedge When $\lim_{x \to a} f(x) = \pm \infty$, some books say "the limit of f at a exists and is infinite", while other books say "the limit of f at a does not exist, but f has an infinite limit at a". We will stick to the second convention.

Example. Let us consider the function f(x) = 1/x:

In this case, we have $\lim_{x\to 0^+} f(x) = +\infty$, $\lim_{x\to 0^-} f(x) = -\infty$.

So, one-sided limits at 0 are infinite, but neither finite nor infinite (two-sided) limit exists at 0.

Example. Let us consider the function $f(x) = 1/x^2$:

