You have already encountered limits!

Today we are starting to talk about **limits** and **continuity**, two key notions in this module.

We have already worked with them implicitly in many situations:

- when we plotted the graphs of functions with “holes” (jumps, cuts etc.);
- when we determined **asymptotes** (vertical, horizontal, oblique) for rational functions;
- when we showed that the behaviour of a polynomial
 \[c_n x^n + c_{n-1} x^{n-1} + \cdots + c_1 x + c_0 \text{ for large } |x| \]
 is essentially the same as the behaviour of its leading term \(c_n x^n \).
Infinite decimals

You have also been using limits when writing things like

\[\frac{1}{3} = 0.333333333\ldots. \]

This expression actually means the following:
The numbers 0.3, 0.33, 0.333, 0.3333 etc. get closer and closer to \(\frac{1}{3} \).

Similarly, when writing

\[\pi = 3.14159265\ldots, \]
we mean that the numbers 3, 3.1, 3.14 etc. approximate the number \(\pi \) better and better.

Limits provide a way of working with approximations in a mathematically rigorous manner.
Informal definition. A function \(f \) is said to have the limit \(L \) as \(x \) approaches \(a \) if the values \(f(x) \) get as close as we wish to \(L \) when \(x \) gets sufficiently close to \(a \). In this case, one writes

\[
\lim_{x \to a} f(x) = L, \quad \text{or} \quad f(x) \to L \quad (x \to a).
\]

The last notation can be read “\(f(x) \) approaches \(L \) when \(x \) approaches \(a \)”.

We say that the limit of a function \(f \) at \(a \) does not exist if there is no \(L \) satisfying \(\lim_{x \to a} f(x) = L \).

⚠️ The definition asks nothing about \(f(a) \), the value of \(f \) at the point \(a \) itself. This point does not even have to lie in the domain of \(f \)!
Example. Let us examine the limit \(\lim_{x \to 1} \frac{x-1}{\sqrt{x-1}} \).

Values for \(x \) getting closer to 1 from the left (i.e., \(x < 1 \)):

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.99</th>
<th>0.999</th>
<th>0.9999</th>
<th>0.99999</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>1.994987</td>
<td>1.999500</td>
<td>1.999950</td>
<td>1.999995</td>
</tr>
</tbody>
</table>

Values for \(x \) getting closer to 1 from the right (i.e., \(x > 1 \)):

<table>
<thead>
<tr>
<th>(x)</th>
<th>1.00001</th>
<th>1.0001</th>
<th>1.001</th>
<th>1.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>2.000005</td>
<td>2.000050</td>
<td>2.000500</td>
<td>2.004988</td>
</tr>
</tbody>
</table>

From this data, it is natural to guess that \(\lim_{x \to 1} \frac{x-1}{\sqrt{x-1}} = 2 \).

But it is only a guess: one has to check that \(f(x) \) approaches 2 for all \(x \) approaching 1, not just for a couple of values of \(x \).
A more systematic approach is to simplify our expression for f:

$$\frac{x - 1}{\sqrt{x} - 1} = \frac{(\sqrt{x})^2 - 1}{\sqrt{x} - 1} = \frac{(\sqrt{x} - 1)(\sqrt{x} + 1)}{\sqrt{x} - 1} = \sqrt{x} + 1$$

for $x \neq 1$. We have the right to write $x = (\sqrt{x})^2$ for x close to 1 (more precisely, for $x \geq 0$).

So, $\frac{x - 1}{\sqrt{x} - 1} = \sqrt{x} + 1$ is close to $\sqrt{1} + 1 = 2$ for x close to 1. (Recall that the value of f at 1 does not matter!)

Conclusion: $\lim_{x \to 1} \frac{x - 1}{\sqrt{x} - 1} = 2$.

In many life situations, this level of rigour is sufficient. However, for certain functions we will need a more precise notion of limit.
Beware of bad samplings!

It is very important that the same qualitative behaviour is observed for all x close to a. In the figure below, depending on sampling values of x we may get the limit value

- 1 as x approaches 0 following the blue dots;
- -1 as x approaches 0 following the red dots.

Since $1 \neq -1$, the limit of this function at 0 does not exist.
Limits formally

Definition. Suppose that \(f \) is defined on an open interval containing the number \(a \), except possibly for \(x = a \). (That is, on \((b, a) \cup (a, c)\) for some \(b < a < c \).) We say that \(f \) has the limit \(L \) at \(a \), and write \(\lim_{x \to a} f(x) = L \), if for any \(\varepsilon > 0 \), we can find a \(\delta = \delta(\varepsilon) > 0 \) such that
\[
|f(x) - L| < \varepsilon \text{ whenever } 0 < |x - a| < \delta.
\]

Observe that \(|f(x) - L| < \varepsilon \) means that \(f(x) \) is in \((L - \varepsilon, L + \varepsilon)\).

Also, \(0 < |x - a| < \delta \) means that \(x \) is in \((a - \delta, a) \cup (a, a + \delta)\). We emphasize that no information is needed about the value at \(x = a \).

The requirement from the definition can be rewritten as
\[
f(x) \text{ is } \varepsilon\text{-close to } L \iff x \text{ is } \delta\text{-close to } a.
\]

One recognises our earlier informal definition:
\[
f(x) \text{ get as close as we wish to } L \text{ when } x \text{ gets sufficiently close to } a.
\]
Example. Let us prove formally that \(\lim_{x \to 0} x^2 = 0 \) (even though intuitively it is absolutely clear).

We are required to find, given \(\varepsilon > 0 \), a \(\delta > 0 \) so that
\[
|x^2 - 0| < \varepsilon \iff 0 < |x - 0| < \delta.
\]

Discovery phase: If we know that \(|x^2| < \varepsilon \), we can replace \(|x^2| \) by the equal number \(|x|^2 \), and conclude that \(|x|^2 < \varepsilon \), so \(|x| < \sqrt{\varepsilon} \). This suggests that \(\delta(\varepsilon) = \sqrt{\varepsilon} \) should work.

Proof phase: Suppose that we take the value of \(\delta \) we discovered, \(\delta = \sqrt{\varepsilon} \). Let us prove that it fits the purpose we have for it. Assume that \(0 < |x| < \delta \).

Then
\[
|x^2| = |x|^2 < \delta^2 = (\sqrt{\varepsilon})^2 = \varepsilon,
\]
as required.
Good news

The previous example was there just for your information: proofs like that are frequently done in maths and theoretical physics, but for our purposes it is usually enough to know that things can be made rigorous.

17th century: Newton and Leibniz start the differential and integral calculus

↓ 150 years

19th century: Weierstrass treats limits rigorously, and introduces the ε-δ machinery.

For our purposes, a good intuitive sense of what having a limit means is usually quite sufficient. We shall formulate a range of theorems about limits to use in applications, but mostly restricting ourselves to intuitive informal proofs, like the one from the “informal” example above.
Karl Weierstraß (1815 – 1897)

\[f(x) := \sum_{n=0}^{\infty} a^n \cos(b^n \pi x) \]

\[ab > 1 + \frac{3}{2} \pi \]

\[0 < a < 1 \]

Weierstraß-Funktion

www.marke-individuell.de
One-sided limits

Definition. A function f is said to have the limit L as x approaches a from the right if the values $f(x)$ get as close as we wish to L when x gets sufficiently close to a while staying greater than a. In this case, one writes

$$\lim_{x \to a^+} f(x) = L, \quad \text{or} \quad f(x) \to L \quad \text{as} \quad x \to a^+.$$

A function f is said to have the limit L as x approaches a from the left if the values $f(x)$ get as close as we wish to L when x gets sufficiently close to a while staying smaller than a. In this case, one writes

$$\lim_{x \to a^-} f(x) = L, \quad \text{or} \quad f(x) \to L \quad \text{as} \quad x \to a^-.$$

Exercise. Give a formal definition of one-sided limits.
One-sided limits

A simple function for which we need one-sided limits is
\[\text{sign}(x) := \frac{x}{|x|}. \]

Since for all \(x > 0 \) this function assumes the value 1, and for all \(x < 0 \) this function assumes the value \(-1\), we have
\[\lim_{x \to 0^-} \text{sign}(x) = -1, \quad \lim_{x \to 0^+} \text{sign}(x) = 1. \]
One-sided limits

Theorem. Given a function f and a point a, one has

$$
\lim_{x \to a} f(x) = L \iff \lim_{x \to a^-} f(x) = L = \lim_{x \to a^+} f(x).
$$

In words, L is the limit of f at a iff L is both its right and its left limit at a.

Exercise. Prove it.

In the previous example, we had $\lim_{x \to 0^-} \text{sign}(x) = -1$ and $\lim_{x \to 0^+} \text{sign}(x) = 1$. So, the function sign does not have a limit at 0.
One-sided limits

Let us consider the following three examples:

In each of those examples, we have
\[\lim_{x \to -1^-} f(x) = 1 \quad \text{and} \quad \lim_{x \to -1^+} f(x) = 1, \]
so, \[\lim_{x \to -1} f(x) = 1. \]

This example illustrates the irrelevance of the value at \(x = a \) for the limit \(\lim_{x \to a} f(x) \).
Infinite limits

Definition. A function f is said to have the limit $+\infty$ as x approaches a from the right (left) if the values $f(x)$ increase without bound when x gets sufficiently close to a while staying greater (or smaller) than a. In this case, one writes

$$\lim_{x \to a^+} f(x) = +\infty,$$

or

$$f(x) \to +\infty; \quad x \to a^+$$

$$\lim_{x \to a^-} f(x) = +\infty,$$

or

$$f(x) \to +\infty; \quad x \to a^-$$

If both are true, one writes $\lim_{x \to a} f(x) = +\infty$.

Informally, you can think of “increasing without bound” as “getting as close as we wish to $+\infty$.”

⚠️ However, avoid treating $\pm \infty$ as a real number. For instance, the expression $|f(x) - (+\infty)|$ doesn’t make sense!
Infinite limits

Similarly, \(f \) is said to have the limit \(-\infty\) as \(x \) approaches \(a \) from the right (left) if the values \(f(x) \) decrease without bound when \(x \) gets sufficiently close to \(a \) while staying greater (or smaller) than \(a \). One writes

\[
\lim_{x \to a^+} f(x) = -\infty, \quad \text{or} \quad f(x) \to -\infty; \\
\lim_{x \to a^-} f(x) = -\infty, \quad \text{or} \quad f(x) \to -\infty.
\]

If both are true, one writes \(\lim_{x \to a} f(x) = -\infty \).

Exercise. Give a formal definition of infinite limits.

Whenever one of the conditions \(\lim_{x \to a^\pm} f(x) = \pm \infty \) holds, the function \(f \) has a vertical asymptote at \(a \).

⚠️ When \(\lim_{x \to a} f(x) = \pm \infty \), some books say “the limit of \(f \) at \(a \) exists and is infinite”, while other books say “the limit of \(f \) at \(a \) does not exist, but \(f \) has an infinite limit at \(a \)”. We will stick to the second convention.
Infinite limits

Example. Let us consider the function \(f(x) = \frac{1}{x} \):

In this case, we have
\[
\lim_{x \to 0^+} f(x) = +\infty, \quad \lim_{x \to 0^-} f(x) = -\infty.
\]

So, one-sided limits at 0 are infinite, but neither finite nor infinite (two-sided) limit exists at 0.
Example. Let us consider the function \(f(x) = \frac{1}{x^2} \):

In this case, we have \(\lim_{x \to 0^+} f(x) = +\infty = \lim_{x \to 0^-} f(x) \).

So, one-sided limits are infinite, as well as the (two-sided) limit:

\[
\lim_{x \to 0} f(x) = +\infty.
\]