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1 Bricks and mortar

Most function you’ll encounter in this module are obtained from the

“elementary bricks”:

X c, c ∈ R (constant functions);

X x;

X sin(x);

X ex (exponential function)

using as “mortar” di�erent operations:

X arithmetic operations: f+ g, f− g, fg, f
g ;

X powers: fα, α ∈ R;

X composition: f ◦ g;
X inverse function f−1;

X gluing functions from di�erent pieces (piecewise defined functions).

Today we’ll study the inverse functions.



2 “Undoing” operations

To undo the e�ect of addition, we subtract: if we replace f by f + g, then to

get back f, we subtract g:

(f + g) − g = f.

To undo the e�ect of multiplication, we divide: if we replace f by fg, then to

get back f, we divide by g:

(fg)/g = f.

In this case, it is not always possible to undo the e�ect: if g(x) = 0 for some

x, then we cannot recover f by division.

We shall now discuss how to undo the e�ect of composition (when possible).



3 The Celsius–Fahrenheit example

Let us consider an example of two di�erent temperature scales, those of

Celsius (1742) and of Fahrenheit (1724).

water freezing water boiling

Celsius 0◦ 100◦

Fahrenheit 32◦ 212◦

(0◦F refers to the freezing point of brine, the lowest temperature Fahrenheit

could reliably reproduce.)

If f is the value of temperature on the Fahrenheit scale, and c is its value on

the Celsius scale, then

f =
9

5
c + 32.



3 The Celsius–Fahrenheit example

Suppose that we know the temperature on the Fahrenheit scale, and want

to convert it to Celsius. (Someone from the US told us the temperature at

their home, and we want to figure out what they mean saying that it’s 80◦!)

We view the conversion formula above as an equation for c, and solve it:

f =
9

5
c + 32,

f− 32 =
9

5
c,

c =
5

9
(f − 32).

In this case, we knew f as a function of c, and we have been able to reverse

the procedure, and compute c as a function of f.

If we had a di�erent functional dependence, for example,

f =
9

5
c2 + 32,

then reconstruction of c as a function of f would be impossible:

c2 = 5
9(f − 32) yields two possible values for c.



4 Definition

Definition. Suppose that for a function f there exists a function g such that

f(g(x)) = x for all x in the domain of g,

g(f(x)) = x for all x in the domain of f.

Then g is said to be the inverse of f, denoted by g = f−1. Also, f and g are

called inverse functions.

This definition is symmetric with respect to f and g, so (f−1)−1 = f (the

inverse of the inverse of f is f itself).

B Whenever f is the name of a function, f−1 will denote the inverse, and

−1 will never mean the exponent: f−1(x) 6= 1
f(x) = f(x)−1. This is a rather

common mistake, try to refrain from it!

Similarly, f2(x) = f(f(x)), while f(x)2 = f(x)f(x).



5 Examples

Example 1. Let f(x) = x2 and g(x) =
√
x.

Then f(g(x)) = (
√
x)2 = x for all x in the domain of g (that is, x > 0).

However, g(f(x)) =
√
x2 = |x|, which is di�erent from x for x < 0 (which

still is in the domain of f).

B Therefore f and g are not inverse functions!

Example 1 bis. Let f(x) = x2 defined for x > 0, and g(x) =
√
x.

Then f(g(x)) = (
√
x)2 = x for all x in the domain of g (that is, x > 0).

Also, g(f(x)) =
√
x2 = x for x > 0 (which is the domain of f).

Therefore f and g are inverse functions.

So, restricting the domain may change the property of being inverse.



5 Examples

Example 2. The function f(x) = x3 has an inverse f−1(x) = 3
√
x. Indeed,

f(f−1(x)) = f
(

3
√
x
)

= ( 3
√
x)3 = x,

f−1(f(x)) = f−1
(

x3
)

=
3
√
x3 = x

for all real x.

That is why the roots were absent from the list of “bricks”!

Example 3. For c 6= 0, the function f(x) = cx has an inverse f−1(x) = 1
cx:

f(f−1(x)) = f

(

1

c
x

)

= c · 1
c
x = x,

f−1(f(x)) = f−1 (cx) =
1

c
· cx = x

for all real x.



5 Examples

Example 4. In Lecture 2, we wanted to compute the range of f(x) = x+1
x−1 .

For that, we solved the equation x+1
x−1 = y for x. The answer was x = y+1

y−1

for y 6= 1.

In other words, the way y depends on x is the same as the way x depends

on y. In particular, this function f is the inverse of itself:

f(f(x)) =

x+1
x−1 + 1
x+1
x−1 − 1

=

x+1+x−1
x−1

x+1−(x−1)
x−1

=

2x
x−1
2

x−1

=
2x

2
= x

for all x 6= 1.



6 The inverse is unique

We will now establish key properties of inverse functions.

Theorem. If a function f has an inverse, then that inverse is unique.

In particular, we have the right to talk about THE inverse of f, and the

notation f−1 is not ambiguous.

Remark. In maths, we use di�erent words to name our results: Theorem,

Proposition, Lemma, Corollary. The name choice depends on the importance

of the statement, and on its connexion with other results. In this course for

simplicity we’ll mainly use the word Theorem.



6 The inverse is unique

Theorem. If a function f has an inverse, then that inverse is unique.

Proof (by contradiction).

Suppose that g1 and g2 are two di�erent inverses of f. Then

g1(f(g2(x))) = g1(x) because f(g2(x)) = x

g1(f(g2(x))) = g2(x) because g1(f(x)) = x.

Both equalities hold for all x in the domain of g2. In particular, this means

that g1(x) is defined for all x for which g2(x) is defined.

Analysing g2(f(g1(x))) in a similar way, one gets a symmetric statement:

g2(x) is defined for all x for which g1(x) is defined.

This means that the domains of g1 and g2 coincide, and that g1(x) = g2(x)

for all x from this common domain.

Thus the functions g1 and g2 coincide, contradiction.



7 Domain and range of the inverse function

Theorem. Suppose that a function f has an inverse. Then the domain of f is

equal to the range of f−1, and the range of f is equal to the domain of f−1.

Proof. To show that the domain of f is equal to the range of f−1, it is

su�icient to show that every x from the domain of f is in the range of f−1,

and every x from the range of f−1 is in the domain of f.

(More generally, to show that some sets A and B coincide, it su�ices to

check that x ∈ A implies x ∈ B, and vice versa.)

First, suppose that x is in the domain of f. Then f−1(f(x)) = x, so x is the

value of f−1 at the point f(x), and therefore x is in the range of f−1.

Now, suppose that x is in the range of f−1, so that x = f−1(t) for some t in

the domain of f−1. Then t = f(f−1(t)) = f(x), so f is defined at the point

x, and therefore x is in the domain of f.

The proof of the other half of the theorem (the range of f is equal to the

domain of f−1) is exactly the same with f and f−1 interchanged.



8 A symmetry between f and f−1

Theorem. Suppose that a function f has an inverse. Then y = f(x) for

some real x and y i� x = f−1(y):

y = f(x) ⇐⇒ x = f−1(y).

Exercise. Prove the theorem. Take inspiration from the proof from the

previous slide.

From this result we deduce a algorithm for computing the inverse function

(when it exists):

1. Form the equation y = f(x).

2. If possible, solve that equation for x as a function of y, x = g(y).

3. If x is required as the name of the independent variable, interchange

the names x and y: y = g(x).

4. Describe the domain of g (which is the range of f).



8 A symmetry between f and f−1

Example. Let f(x) =
√
3x − 2. Its natural domain is [23 ,+∞).

1. We form the equation y =
√
3x− 2.

2. Solving this equation for x goes as follows:

y =
√
3x− 2,

y2 = 3x− 2,

x =
y2 + 2

3
.

3. Interchanging names of variables, we obtain the formula g(x) = x2+2
3

.

4. The domain of f−1 is equal to the range of f, which is [0,+∞).

Conclusion: We get the inverse

f−1(x) =
x2 + 2

3
, x > 0.



8 A symmetry between f and f−1

Theorem. Suppose that a function f has an inverse. Then y = f(x) for

some real x and y i� x = f−1(y):

y = f(x) ⇐⇒ x = f−1(y).

From this result we also deduce

Theorem. Suppose that a function f has an inverse. Then the graph of f−1

is obtained from that of f by reflection about the line y = x.



8 A symmetry between f and f−1

Theorem. Suppose that a function f has an inverse. Then the graph of f−1

is obtained from that of f by reflection about the line y = x.

Examples.

x

y

y =
√
x

y = x2,

x > 0

x

y

y = x+1
2

y = 2x− 1



9 When does a function have an inverse?

Definition. A function f is called injective, or one-to-one, if its values at

any distinct points from its domain are distinct:

x1 6= x2 ⇒ f(x1) 6= f(x2).

Theorem. A function admits an inverse i� it is injective.

Proof. 1) Suppose that f has an inverse f−1, and that f(x1) = f(x2) for

some x1 6= x2 from its domain. Then

x1 = f−1(f(x1)) = f−1(f(x2)) = x2,

which is a contradiction.

2) Next, suppose that f is injective. This means that for any y from its range,

there is exactly one pre-image x, i.e., y = f(x). Put g(y) = x. This defines a

function on the range of f.

XBy construction, g(f(x)) = x for all x from the domain of f.

XAlso, any x from the domain of g is in the range of f, and so has the

form x = f(t) for some t. So,

f(g(x)) = f(g(f(t))) = f(t) = x.

Therefore, g is the inverse of f.



9 When does a function have an inverse?

Definition. A function f is called injective, or one-to-one, if its values at

any distinct points from its domain are distinct:

x1 6= x2 ⇒ f(x1) 6= f(x2).

Theorem. A function admits an inverse i� it is injective.

This yields the horizontal line test for invertibility: a function is invertible

i� each horizontal line meets its graph at most once. This is just a reflection

of the vertical line test about the line y = x!

Example 1. The absolute value f(x) = |x| is not injective, since

f(−1) = 1 = f(1). Therefore, it does not have an inverse.

More generally, an even function never has an inverse, since f(−x) = f(x).

Example 2. The function f(x) = 2 sin(x3 − 1) is not injective, since

f(0) = f(6π). Therefore, it does not have an inverse.

More generally, a periodic function never has an inverse, since

f(x) = f(x + T).



9 When does a function have an inverse?

In both examples above we used the “negative” part of the theorem. To use

the “positive” part, one more definition is helpful.

Definition. A function f is called

X increasing if for any x1, x2 from its domain,

x1 < x2 ⇒ f(x1) < f(x2);

X decreasing if for any x1, x2 from its domain,

x1 < x2 ⇒ f(x1) > f(x2);

X monotonous if it is increasing or decreasing.

Theorem. A monotonous function is injective and admits an inverse.

Exercise. Prove the theorem.

Example 1. The linear function f(x) = mx+ b withm 6= 0 is monotonous:

x1 < x2 impliesmx1 + b < mx2 + b when m > 0, and

mx1 + b > mx2 + b when m < 0. Hence, all these functions admit

inverses.



9 When does a function have an inverse?

Example 2. The function

f(x) =

{
x, x < 0

1− x, 0 6 x 6 1

is not monotonous, since f(−1) = −1 < f(0) = 1 > f(1) = 0. However, it is

invertible, with f−1 = f:

f(f(x)) = f(x) = x for x < 0,

f(f(x)) = f(1− x) = 1− (1− x) = x for 0 6 x 6 1.

x

y

bc b

b

B So, the converse of the theorem is false: invertible ; monotonous.



10 Inverse trigonometric functions

All trigonometric functions are periodic, hence not invertible. However, it

would be nice to have some kind of sin−1, tan−1 etc., for instance in order

to determine the angles between two lines defined by equations:

x

y

y = mx + b

θ =?

We would like to write θ = tan−1(m), and use a calculator to compute it!

A way out is to restrict the domain of trigonometric functions.



10 Inverse trigonometric functions

The function sin is increasing on [−π
2 ,

π
2 ]:

x

y
y = sinx

y = sin x,
x ∈ [−π

2 ,
π
2 ]

Its range is [−1, 1]. Hence, its restriction to [−π
2
, π
2
] has an inverse, denoted

by arcsin = sin−1, and called arcsine.

x

y

y = arcsin x

y = sin x,
x ∈ [−π

2
, π
2
]

Its domain is [−1, 1], and its range is [−π
2 ,

π
2 ]. It is odd, since sin is odd, but

NOT periodic!



10 Inverse trigonometric functions

Similarly, cos is decreasing on [0, π]:

x

y y = cos x

y = cos x,
x ∈ [0, π]

Its range is [−1, 1]. Hence, its restriction to [0, π] has an inverse, denoted by

arccos = cos−1, and called arccosine.

x

y

y = arccos x

y = cos x,
x ∈ [0, π]

Its domain is [−1, 1], and its range is [0, π].



10 Inverse trigonometric functions

Finally, tan is increasing on (−π
2 ,

π
2 ):

x

y

y = tan x,
x ∈ (−π

2 ,
π
2 )

Its range is R = (−∞,∞). Hence, its restriction to (−π
2
, π
2
) has an inverse,

denoted by arctan = tan−1, and called arctangent.

x

y

y = arctan x

y = tan x,
x ∈ (−π

2 ,
π
2 )

Its domain is R, and its range is (−π
2
, π
2
). It is odd, since tan is odd.



10 Inverse trigonometric functions

You can think about the inverse trigonometric functions as follows:

X arcsin(x) is the angle between −π
2
and π

2
whose sin is x;

X arccos(x) is the angle between 0 and π whose cos is x;

X arctan(x) is the angle strictly between −π
2 and π

2 whose tan is x.

B If you write “arcsin(x) is the angle whose sin is x”, this is a mistake:

there are plenty of angles with the same sin!

function domain range symmetries

arcsin [−1, 1] [−π
2 ,

π
2 ] odd

arccos [−1, 1] [0, π] –

arctan R (−π
2
, π
2
) odd

arccot R (0, π) –

B You know that when you want to determine the natural domain of a

function, you need to be careful with expressions
√

g(x) and
h(x)
g(x)

. Now,

one more type of expressions should be taken care of: when you see

arcsin(g(x)) or arccos(g(x)), always check that −1 6 g(x) 6 1.



10 Inverse trigonometric functions

function domain range symmetries

arcsin [−1, 1] [−π
2 ,

π
2 ] odd

arccos [−1, 1] [0, π] –

arctan R (−π
2 ,

π
2 ) odd

arccot R (0, π) –

If, for instance, you are looking for an angle between −π and 0 whose cos is

x, the answer will be − arccos(x).

x

y
y = cos x



11 Digression: writing maths

In this module I am being rather informal in writing down mathematical

arguments. For example, when solving the equation x+1
x−1 = a for x, I wrote

x+ 1

x− 1
= a,

x+ 1 = ax − a,

a+ 1 = ax− x = x(a − 1),

x =
a+ 1

a− 1
.

Here, some lines are equivalent to the preceding ones, and some are simply

a consequence. Thus,

X adding the same element to both sides of the equation leads to an

equivalent equation;

X multiplying both sides by the same thing leans to a consequence only,

since you might multiply by zero (a = b implies a ∗ 0 = b ∗ 0, but not
the other way round).



11 Digression: writing maths

So, our reasoning can be wri�en more precisely:
x+ 1

x− 1
= a,

=⇒ x+ 1 = ax − a,

⇐⇒ a + 1 = ax − x = x(a− 1),

⇐= x =
a + 1

a − 1
.

Then, to replace the implication signs by equivalences, you should mention

that x = 1 is impossible when x+ 1 = ax− a, and a = 1 is impossible

when a+ 1 = x(a − 1).

B I recommend these notations. They’ll make life easier for your graders

and for yourself (you’ll have less chances to forget to think about the

division be zero etc.).



11 Digression: writing maths

Another unfortunate notation I o�en see in students’ work is the comma

replacing either and or or :

x(x− 2) = 0 ⇐⇒ x = 0, x = 2;

x2 + (y − 1)2 = 0 ⇐⇒ x = 0, y = 1.

Here the comma means or in the first case, and in the second case.

Guess what percentage of students forget what their comma meant three

lines later?

B Write the words and / or when you mean them! They are not that long!



12 Digression: infinity

One more common mistake I’d like to point out concerns the notations +∞

and −∞. These are not real numbers, so you cannot include them in the

closed intervals:

B Never write [0,+∞] etc.‼! Otherwise you allow real numbers x

satisfying x = +∞, but +∞ is not a real number!

Recall that [0,+∞) means the ray of all real numbers x satisfying x > 0:

[0,+∞) = { x ∈ R | 0 6 x }.


