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1 Symmetries in sciences

In all sciences, you inevitably meet

X transformations of various systems you work with;

X symmetric systems, i.e. those unchanged by the corresponding

transformations.

Here the word “symmetric” is employed in a wider sense that you are

probably used to.

You encounter symmetries in physics:



You encounter symmetries in chemistry:



You encounter symmetries in biology:

The good thing about something symmetric is that understanding a part of

it su�ices for understanding the whole object.



2 Symmetries in calculus

In calculus, our main objects of study is functions.

We have already seen their major transformations:

function transformation graph transformation

f(x) ; f(x + a) horizontal shi�

f(x) ; f(x) + a vertical shi�

f(x) ; f(−x) horizontal reflection (about the y-axis)

f(x) ; −f(x) vertical reflection (about the x-axis)

f(x) ; f(cx) horizontal compression/stretching

f(x) ; cf(x) vertical compression/stretching

c > 1: vertical stretching, horizontal compression;

0 < c < 1: vertical compression, horizontal stretching.

Today we will talk about symmetries with respect to these transformations.



3 Functions with symmetries

Definition. A function f is said to be

X even if for all x in the domain of f, −x is also in the domain of f, and

f(−x) = f(x);

X odd if for all x in the domain of f, −x is also in the domain of f, and

f(−x) = −f(x);

X periodic with period T if for all x in the domain of f, x+ T is also in

the domain of f, and f(x + T) = f(x).

B Don’t forget to check that −x or x+ T is in the domain of f whenever x

is! Students o�en omit this impotent step.

Example. The function f(x) = x for x > 1 is not odd, since f is defined at

x = 1, but not at x = −1.



3 Functions with symmetries

function property graph property

even symmetric about the y-axis

odd symmetric about the origin (0, 0)

periodic with period T unchanged under the horizontal shi� by T units

Being aware of symmetries allows us to study a function just on a part of its

domain (only for x > 0, or on [a, a + T)), and derive information elsewhere

by using symmetry.

One more application of symmetry:

The average value (hence, the integral) of an odd function is 0, since

f(x) + f(−x) = 0 for all x in its domain.



4 Even functions

Let us take the function f(x) = x sin(2x). Since

f(−x) = (−x) sin(−2x) = (−x)(− sin(2x)) = x sin(2x),

this function is even. The corresponding graph looks as follows:

x

y

y = x sin(2x)



5 Odd functions

Let us take the function f(x) = sin
(

1

5
x3

)

. Since

f(−x) = sin

(

1

5
(−x)3

)

= sin

(

−
1

5
x3

)

= − sin

(

1
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x3

)

,

this function is odd. The corresponding graph looks as follows:
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6 Periodic functions

Let us take the function f(x) = sin(2x) + 2 cos(4x). Since

f(x + π) = sin(2(x + π)) + 2 cos(4(x + π)) =

= sin(2x + 2π) + 2 cos(4x + 4π) = sin(2x) + 2 cos(4x) = f(x),

this function is periodic with period π.

x

y y = sin(2x) + 2 cos(4x)



7 Symmetry about the x-axis

What about the symmetry about the x-axis? We discussed that type of

symmetry the last time:

x

y

y =
√
xy =

√
−x

y = −
√
x



7 Symmetry about the x-axis

A graph of a function cannot be symmetric about the x-axis, since that

would break the vertical line test:

x

y

The only exception is the graph of the zero function f(x) = 0, since in this

case each vertical line meets the graph at the x-axis, so there is just one

intersection point.



7 Symmetry about the x-axis

It can however be useful to apply the symmetry about the x-axis to plot

curves defined by equations:

x

y
y2 = 4x2(1− x2)

x

y
y =

√

4x2(1− x2)

y = −
√

4x2(1 − x2)



8 Symmetries for curves

For curves defined by equations we have the following symmetry tests:

X A plane curve is symmetric about the y-axis i� (= if and only if) its

equation does not change under replacing x by −x;

X A plane curve is symmetric about the x-axis i� its equation does not

change under replacing y by −y;

X A plane curve is symmetric about the origin i� its equation does not

change under replacing x by −x and y by −y simultaneously.

Example. The curve y2 = 4x2(1− x2) satisfies all these conditions, so it has

many di�erent symmetries:

x

y



9 Families of straight lines

Let us, alongside with building a “vocabulary” for talking about functions,

start building a “library” of functions.

Geometrically, the simplest possible shape is the straight line:

X horizontal straight lines are defined by equations y = c for various c;

X vertical lines are defined by equations x = c for various c;

X general non-vertical lines are defined by equations y = mx+ b for

various m (slopes) and b (shi�s);

X general lines are defined by linear equations ax+ by = c for various

a, b, c.



9 Families of straight lines

x

y x = 1

x = 1.5

x = −1

x = −1.5



9 Families of straight lines
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y = −1.5



9 Families of straight lines

x

y

These “whiskers” are lines y = mx − 1 for variousm. Note that for x = 0

the formula produces −1 regardless of whatm is. So, all these lines

intersect at the point (0,−1).



9 Families of straight lines

x

y

These lines are y = x/3+ b for various b. Note that they all are indeed

obtained from y = x/3 by vertical shi�s.



10 Families of power functions

Another basic class of functions is the power functions, y = xn. We shall

consider several di�erent options for n, assuming that it is an integer.

x

y

This illustrates the behaviour of y = xn for even n = 2, 4, 6, 8.

These functions are even, and intersect at three points: (−1, 1), (0, 0), (1, 1).



10 Families of power functions

x

y

This illustrates the behaviour of y = xn for odd n = 3, 5, 7, 9.

These functions are odd, and intersect at three points: (−1,−1), (0, 0),

(1, 1).



11 Families y = k/x

The inverse proportionality y = k/x is a function that appears in many

situations, e.g. Boyle’s Law PV = k (for a fixed amount of an ideal gas at

constant temperature).

x

y

This illustrates the behaviour of y = k/x for k = 1/2, 1, 2. The larger k, the

further the graph would be from the origin.



11 Families y = k/x

x

y

This illustrates the behaviour of y = k/x for k = 1/2, 1, 2. The larger k, the

further the graph would be from the origin.

The natural domain and the range of all these functions are

(∞, 0) ∪ (0,+∞). They are all odd, and do not intersect.



12 Families of inverse power functions

x

y

This illustrates the behaviour of y = xn for odd n = −1,−3,−5. These

functions are odd, and intersect at two points: (−1,−1) and (1, 1).



12 Families of inverse power functions

x

y

This illustrates the behaviour of y = xn for even n = −2,−4,−6. These

functions are even, and intersect at two points: (−1, 1) and (1, 1).



13 Summary for power functions

X for even n > 2 we get something that looks like the parabola (but is

fla�er close to the origin, and steeper far from the origin);

X for odd n > 3 we get something that looks like the parabola for x > 0

(but is fla�er close to the origin, and steeper far from the origin), and is

obtained by a reflection about the x-axis for x < 0;

X for odd n 6 −1, we get something that looks like the graph of inverse

proportionality y = k/x (but steeper close to the origin, and fla�er far

from the origin);

X for even n 6 −2, we get something that looks like the graph of inverse

proportionality y = k/x for x > 0 (but steeper close to the origin, and

fla�er far from the origin), and is obtained by a reflection about the

x-axis for x < 0;

X for non-integer exponents, graphs are similar to those for integer ones;

we shall discuss that in more detail a bit later.


