Lecture 3: New functions from old ones

Victoria LEBED, lebed@maths.tcd.ie

MA1S11A: Calculus with Applications for Scientists

October 6, 2017

Arithmetic operations on functions

We'll now learn how to construct complicated functions out of simpler ones.

First, two functions f and g can be added, subtracted, multiplied, and divided in a natural way.

✓ For f + g, f - g, and fg to be defined, both f and g should be defined.

✓ For f/g to be defined, both f and g should be defined, and also the value of g should be non-zero: $g(x) \neq 0$.

Arithmetic operations on functions

Example 1. Let
$$f(x) = 1 + \sqrt{x-2}$$
, and $g(x) = x - 3$. Then
 \checkmark $(f+g)(x) = 1 + \sqrt{x-2} + x - 3 = x - 2 + \sqrt{x-2}$,
 \checkmark $(f-g)(x) = 1 + \sqrt{x-2} - (x-3) = 4 - x + \sqrt{x-2}$

$$\checkmark (fg)(x) = (1 + \sqrt{x-2})(x-3).$$

In all these cases, the domain is the intersection of the domains of f and g, i.e., $[2, +\infty) \cap \mathbb{R} = [2, +\infty)$.

$$\checkmark$$
 (f/g)(x) = $\frac{1 + \sqrt{x - 2}}{x - 3}$

Here the domain is $[2, +\infty) \setminus \{3\} = [2, 3) \cup (3, +\infty)$.

In these examples, the domains of f + g, f - g, fg, f/g are their natural domains. That is not always the case.

Arithmetic operations on functions

Example 2. Let
$$f(x) = \sqrt{x-2}$$
, and $g(x) = \sqrt{x-3}$. Then

$$(fg)(x) = \sqrt{x-2}\sqrt{x-3} = \sqrt{(x-2)(x-3)} = \sqrt{x^2 - 5x + 6}.$$

The domain of fg is $[2, +\infty) \cap [3, +\infty) = [3, +\infty)$.

The natural domain of $\sqrt{x^2 - 5x + 6}$ is $(-\infty, 2] \cup [3, +\infty)$, since $x^2 - 5x + 6 = (x - 2)(x - 3)$. This is different from $[3, +\infty)!$

Example 3. Let f(x) = x, and g(x) = 1/x. Then

$$f/g)(x) = \frac{x}{\underline{1}} = x^2.$$

The domain of f/g is $(-\infty, 0) \cup (0, +\infty)$, which *does not* coincide with the natural domain of x^2 , that is $(-\infty, +\infty)$.

2 Composition of functions

The arithmetic operations on functions were not "genuinely" new operations, since they just used arithmetics of real numbers at different points x independently. Now we shall define a truly new way to construct new functions, not having numeric analogues.

Definition. The **composition** of two functions f and g, denoted by $f \circ g$, is the function whose value at x is f(g(x)):

$(f \circ g)(x) = f(g(x)).$

Its domain is defined as the set of all x in the domain of g for which the value g(x) is in the domain of f.

Think about a cooking recipe: you apply the first step g to your ingredients x, and then in the second step f you can use only what you got at the first step, i.e., g(x). The original ingredients x are no longer available!

2 Composition of functions

Definition. The **composition** of two functions f and g, denoted by $f \circ g$, is the function whose value at x is f(g(x)):

$(f \circ g)(x) = f(g(x)).$

Its domain is defined as the set of all x in the domain of g for which the value g(x) is in the domain of f.

Example 1. Recall the usual method for solving quadratic equations: $x^{2}+px+q = x^{2}+2\frac{p}{2}x+q = x^{2}+2\frac{p}{2}x+\frac{p^{2}}{4}-\frac{p^{2}}{4}+q = \left(x+\frac{p}{2}\right)^{2}-\frac{p^{2}}{4}+q.$ It represents $x^{2} + px + q$ as the composition f(g(x)), where $\checkmark f(x) = x^{2} - \left(\frac{p^{2}}{4} - q\right),$ $\checkmark g(x) = x + \frac{p}{2}.$

2 Composition of functions

Example 2. Let $f(x) = x^2 + 3$ and $g(x) = \sqrt{x}$. Then $(f \circ g)(x) = (\sqrt{x})^2 + 3 = x + 3$.

Note that the domain of f is $(-\infty, +\infty)$, and the domain of g is $[0, +\infty)$, so the only restriction we impose on x to get the domain of $f \circ g$ is that g is defined, and we conclude that $(f \circ g)(x) = x + 3, x \ge 0$.

 \bigwedge This function is different from h(x) = x + 3, whose natural domain is \mathbb{R} !

On the other hand,

$$(\mathfrak{g}\circ\mathfrak{f})(\mathfrak{x})=\sqrt{\mathfrak{x}^2+3}.$$

Since f is defined everywhere, the only restriction we impose on x to get the domain of $g \circ f$ is that f(x) is in the domain of g, so since $x^2 + 3$ is positive for all x, we conclude that $(g \circ f)(x) = \sqrt{x^2 + 3}$, with its natural domain $\mathbb{R} = (-\infty, +\infty)$.

Question. What is the range of $g \circ f$? *Answer.* $[\sqrt{3}, +\infty)$.

$\sqrt{3}$ Operations on functions and graphs

Let us plot some graphs to get a better feeling on how operations on functions work.

To begin with, we obtain the graph of $f(x) = \sqrt{x} + \frac{1}{x}$ from the graphs of \sqrt{x} and $\frac{1}{x}$. y

4 Translations and graph shifts

Let t denote the translation function, t(x) = x + a. Replacing f(x) by $f(x) + a = (t \circ f)(x)$ shifts the graph vertically: up if a > 0, down if a < 0.

Let t denote the translation function, t(x) = x + a. Replacing f(x) by $f(x + a) = (f \circ t)(x)$ shifts the graph horizontally: left if a > 0, right if a < 0.

4 Translations and graph shifts

Let us plot the graph of the function $y = x^2 - 4x + 5$. By completing the square, we obtain $y = x^2 - 4x + 4 + 1 = (x - 2)^2 + 1$. So, our graph can be obtained from that of $y = x^2$ by a horizontal and a vertical shifts.

5 Reflections and graph symmetries

5 Reflections and graph symmetries

Let r denote the reflection function, r(x) = -x. Replacing a function f(x) by $f(-x) = (f \circ r)(x)$ reflects the graph about the y-axis, and replacing f(x) by $-f(x) = (r \circ f)(x)$ reflects the graph about the x-axis.

5 Reflections and graph symmetries

Let us transform the graph of the function $\mathbf{y} = |\mathbf{x}|$ into that of

6 Transforming functions and graphs

By now, you have probably figured out the general principle: Composing a general function with a basic function corresponds to an elementary transformation of its graph.

function transformation	graph transformation
$f(x) \rightsquigarrow f(x+a)$	horizontal shift
$f(x) \rightsquigarrow f(x) + a$	vertical shift
$f(x) \rightsquigarrow f(-x)$	horizontal reflection (about the y-axis)
$f(x) \rightsquigarrow -f(x)$	vertical reflection (about the x-axis)
$f(x) \rightsquigarrow f(cx)$	horizontal compression/stretching
$f(x) \rightsquigarrow cf(x)$	vertical compression/stretching

c > 1: vertical stretching, horizontal compression;

0 < c < 1: vertical compression, horizontal stretching.

7 Scaling and graph compression/stretching

Let s denote the scaling function, s(x) = cx. Replacing a function f(x) by $cf(x) = (s \circ f)(x)$ stretches the graph vertically if c > 1, and compresses the graph vertically if 0 < c < 1.

Contraction Scaling and graph compression/stretching

Let s denote the scaling function, s(x) = cx. Replacing a function f(x) by $f(cx) = (f \circ s)(x)$ compresses the graph horizontally if c > 1, and stretches the graph horizontally if 0 < c < 1.