Arithmetic operations on functions

We’ll now learn how to construct complicated functions out of simpler ones.

First, two functions f and g can be added, subtracted, multiplied, and divided in a natural way.

✓ For $f + g$, $f - g$, and fg to be defined, both f and g should be defined.

✓ For f/g to be defined, both f and g should be defined, and also the value of g should be non-zero: $g(x) \neq 0$.
Example 1. Let \(f(x) = 1 + \sqrt{x - 2} \), and \(g(x) = x - 3 \). Then

\[
\begin{align*}
(f + g)(x) &= 1 + \sqrt{x - 2} + x - 3 = x - 2 + \sqrt{x - 2}, \\
(f - g)(x) &= 1 + \sqrt{x - 2} - (x - 3) = 4 - x + \sqrt{x - 2}, \\
(fg)(x) &= (1 + \sqrt{x - 2})(x - 3).
\end{align*}
\]

In all these cases, the domain is the intersection of the domains of \(f \) and \(g \), i.e., \([2, +\infty) \cap \mathbb{R} = [2, +\infty)\).

\[
(f/g)(x) = \frac{1 + \sqrt{x - 2}}{x - 3}.
\]

Here the domain is \([2, +\infty) \setminus \{3\} = [2, 3) \cup (3, +\infty)\).

In these examples, the domains of \(f + g \), \(f - g \), \(fg \), \(f/g \) are their natural domains. That is not always the case.
Example 2. Let \(f(x) = \sqrt{x - 2} \), and \(g(x) = \sqrt{x - 3} \). Then

\[
(fg)(x) = \sqrt{x - 2}\sqrt{x - 3} = \sqrt{(x - 2)(x - 3)} = \sqrt{x^2 - 5x + 6}.
\]

The domain of \(fg \) is \([2, +\infty) \cap [3, +\infty) = [3, +\infty)\).

The natural domain of \(\sqrt{x^2 - 5x + 6} \) is \((-\infty, 2] \cup [3, +\infty)\), since \(x^2 - 5x + 6 = (x - 2)(x - 3) \). This is different from \([3, +\infty)\)!

Example 3. Let \(f(x) = x \), and \(g(x) = 1/x \). Then

\[
(f/g)(x) = \frac{x}{1} = x^2.
\]

The domain of \(f/g \) is \((-\infty, 0) \cup (0, +\infty)\), which does not coincide with the natural domain of \(x^2 \), that is \((-\infty, +\infty)\).
Composition of functions

The arithmetic operations on functions were not “genuinely” new operations, since they just used arithmetics of real numbers at different points x independently. Now we shall define a truly new way to construct new functions, not having numeric analogues.

Definition. The *composition* of two functions f and g, denoted by $f \circ g$, is the function whose value at x is $f(g(x))$:

$$(f \circ g)(x) = f(g(x)).$$

Its domain is defined as the set of all x in the domain of g for which the value $g(x)$ is in the domain of f.

Think about a cooking recipe: you apply the first step g to your ingredients x, and then in the second step f you can use only what you got at the first step, i.e., $g(x)$. The original ingredients x are no longer available!
Composition of functions

Definition. The **composition** of two functions \(f \) and \(g \), denoted by \(f \circ g \), is the function whose value at \(x \) is \(f(g(x)) \):

\[
(f \circ g)(x) = f(g(x)).
\]

Its domain is defined as the set of all \(x \) in the domain of \(g \) for which the value \(g(x) \) is in the domain of \(f \).

Example 1. Recall the usual method for solving quadratic equations:

\[
x^2 + px + q = x^2 + 2\frac{p}{2}x + q = x^2 + 2\frac{p}{2}x + \frac{p^2}{4} - \frac{p^2}{4} + q = \left(x + \frac{p}{2}\right)^2 - \frac{p^2}{4} + q.
\]

It represents \(x^2 + px + q \) as the composition \(f(g(x)) \), where

\[
\begin{align*}
\checkmark \quad f(x) &= x^2 - \left(\frac{p^2}{4} - q\right), \\
\checkmark \quad g(x) &= x + \frac{p}{2}.
\end{align*}
\]
Example 2. Let \(f(x) = x^2 + 3 \) and \(g(x) = \sqrt{x} \). Then
\[
(f \circ g)(x) = (\sqrt{x})^2 + 3 = x + 3.
\]
Note that the domain of \(f \) is \((-\infty, +\infty)\), and the domain of \(g \) is \([0, +\infty)\), so the only restriction we impose on \(x \) to get the domain of \(f \circ g \) is that \(g \) is defined, and we conclude that \((f \circ g)(x) = x + 3, x \geq 0 \).

⚠️ This function is different from \(h(x) = x + 3 \), whose natural domain is \(\mathbb{R} \)!

On the other hand,
\[
(g \circ f)(x) = \sqrt{x^2 + 3}.
\]
Since \(f \) is defined everywhere, the only restriction we impose on \(x \) to get the domain of \(g \circ f \) is that \(f(x) \) is in the domain of \(g \), so since \(x^2 + 3 \) is positive for all \(x \), we conclude that \((g \circ f)(x) = \sqrt{x^2 + 3} \), with its natural domain \(\mathbb{R} = (-\infty, +\infty) \).

Question. What is the range of \(g \circ f \)?
Answer. \([\sqrt{3}, +\infty)\).
Let us plot some graphs to get a better feeling on how operations on functions work.

To begin with, we obtain the graph of $f(x) = \sqrt{x} + \frac{1}{x}$ from the graphs of \sqrt{x} and $\frac{1}{x}$.
Translations and graph shifts

\[y = x^2 \]
Let \(t \) denote the translation function, \(t(x) = x + a \). Replacing \(f(x) \) by \(f(x) + a = (t \circ f)(x) \) shifts the graph vertically: up if \(a > 0 \), down if \(a < 0 \).
Translations and graph shifts

\[y = x^2 \]
Translations and graph shifts

Let t denote the translation function, $t(x) = x + a$. Replacing $f(x)$ by $f(x + a) = (f \circ t)(x)$ shifts the graph horizontally: left if $a > 0$, right if $a < 0$.

\[
\begin{align*}
y &= (x + 1)^2 \\
y &= x^2 \\
y &= (x - 1)^2
\end{align*}
\]
Let us plot the graph of the function $y = x^2 - 4x + 5$. By completing the square, we obtain $y = x^2 - 4x + 4 + 1 = (x - 2)^2 + 1$. So, our graph can be obtained from that of $y = x^2$ by a horizontal and a vertical shifts.
Reflections and graph symmetries

\[y = \sqrt{x} \]
Let r denote the reflection function, $r(x) = -x$. Replacing a function $f(x)$ by $f(-x) = (f \circ r)(x)$ reflects the graph about the y-axis, and replacing $f(x)$ by $-f(x) = (r \circ f)(x)$ reflects the graph about the x-axis.
Reflections and graph symmetries

Let us transform the graph of the function \(y = |x| \) into that of \(y = 4 - |x - 2| \).
By now, you have probably figured out the general principle: Composing a general function with a basic function corresponds to an elementary transformation of its graph.

<table>
<thead>
<tr>
<th>function transformation</th>
<th>graph transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x) \rightarrow f(x + a)$</td>
<td>horizontal shift</td>
</tr>
<tr>
<td>$f(x) \rightarrow f(x) + a$</td>
<td>vertical shift</td>
</tr>
<tr>
<td>$f(x) \rightarrow f(-x)$</td>
<td>horizontal reflection (about the y-axis)</td>
</tr>
<tr>
<td>$f(x) \rightarrow -f(x)$</td>
<td>vertical reflection (about the x-axis)</td>
</tr>
<tr>
<td>$f(x) \rightarrow f(cx)$</td>
<td>horizontal compression/stretching</td>
</tr>
<tr>
<td>$f(x) \rightarrow cf(x)$</td>
<td>vertical compression/stretching</td>
</tr>
</tbody>
</table>

$c > 1$: vertical stretching, horizontal compression;
$0 < c < 1$: vertical compression, horizontal stretching.
Scaling and graph compression/stretching

\[y = \cos x \]
Let s denote the scaling function, $s(x) = cx$. Replacing a function $f(x)$ by $cf(x) = (s \circ f)(x)$ stretches the graph vertically if $c > 1$, and compresses the graph vertically if $0 < c < 1$.
Scaling and graph compression/stretching

\[y = \cos(x) \]
Let s denote the scaling function, $s(x) = cx$. Replacing a function $f(x)$ by $f(cx) = (f \circ s)(x)$ compresses the graph horizontally if $c > 1$, and stretches the graph horizontally if $0 < c < 1$.

$\frac{\frac{\frac{\frac{c}{c}}{c}}{c}}{c} \frac{\frac{\frac{c}{c}}{c}}{c}$