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1 Derivatives and rectilinear motion

One of the original motivations for introducing derivatives was to handle

velocity and acceleration. To cover these concepts in full generality, we need

to work with vector-valued functions. But real-valued functions also apply

in practice—to study rectilinear motion, i.e., motion along a line.

Consider for instance the height of an object thrown vertically, either

upward or downward. From physics, you know that this motion is

parabolic, and can be described by the following functions:

position (height) x(t) = at2 + bt+ c,

velocity v(t) = x ′(t) = 2at + b,

acceleration a(t) = x ′′(t) = 2a,

where a, b, c ∈ R are parameters. Here t is the time variable.

From physics you know that in this situation the acceleration is due to

gravity only, and near the surface of the Earth its value is ≈9.8m/s2. So,

you can take a = −4.9m/s2. (The sign is negative since gravity

acceleration is directed downward).



1 Derivatives and rectilinear motion

The motion equation becomes

x(t) = −4.9t2 + bt+ c.

We can measure the height from the point where the object was thrown,

and start measuring time when this happened. This means c = x(0) = 0.

The equation of motion now becomes

x(t) = −4.9t2 + bt.

To determine b, you need some extra information. For example, if you are

given the initial velocity v0, then

b = x ′(0) = v0.

Let us find stationary points of x(t). Equation x ′(t) = 0 means here

−9.8t + b = 0, that is, t = b

9.8
. If the original movement direction was

upward, we get b = v0 > 0, so t = b

9.8
> 0 is a valid value for time.

Looking at the sign of x ′(t) = −9.8t + b, we see that in this case x(t) has a

local maximum at b

9.8
. This corresponds to what you know from practice: a

ball thrown upward stops at some moment and then falls down.

Exercise. Plot the graph of h(t) for v0 =5m/s2 and v0 =−5m/s2.



2 Integrals and rectilinear motion

Now, integrals appear in di�erent situations involving rectilinear motion.

1) Suppose that you are driving a car looking at your speedometer. From its

readings only, you would like to know

(a) how far you got,

(b) how may kilometres you have driven,

in both cases between the beginning of your trip (t = 0) and its end (t = t1).

The answers are given by integrals:

(a) the displacement

∫
t1

0

v(t)dt = x(t1) − x(0);

(b) the distance traveled

∫
t1

0

|v(t)|dt.



2 Integrals and rectilinear motion

2) Now, suppose that you know the acceleration of the object. For instance,

let it be constant, a(t) = c0 (as in the free fall considered above). From this

you deduce

v(t) =

∫
a(t)dt = c0t+ c1,

x(t) =

∫
v(t)dt =

c0

2
t2 + c1t+ c2

for some real constants c1, c2. We thus recover the parabolic motion known

from physics.

The constants can be computed using some additional data, such as

X the initial position x(0) = c2,

X the initial velocity v(0) = c1.

3) Finally, to find the average position (e.g., height) of the object during its

movement, you also need integrals:

xave =
1

t1

∫
t1

0

x(t)dt.



3 Integrals and work

Basic principle: If a constant force of magnitude F, applied in the direction

of the motion of an object, moves this object by a distance d, then thework

performed by the force on the object is defined to be

W = F · d.

Using that principle and our usual divide-and-approximate technique, one

can define and compute the work of a variable force:

1) divide the path of the object into many small parts;

2) on each part, assume the force to be constant and apply the above

principle;

3) add the results together;

4) compute the limit of the total sums when the parts get arbitrarily small.



3 Integrals and work

As a consequence, the work is equal to limit of Riemann sums:
N∑
i=1

F(x∗i )∆xi,

that is,

W =

∫
b

a

F(x)dx,

where a and b are the initial and the final position of the object,

respectively.



4 Example: Hooke’s Law

Hooke’s Law: a spring stretched x units beyond its natural length pulls

back with a force

F(x) = kx,

where k is a constant called the sti�ness of the spring; it depends on the

material as well as the thickness of the spring.

Example. Suppose that a spring exerts a force of 5N when stretched one

metre beyond its natural length. Find the work required to stretch the

spring 1.8 metres beyond its natural length.

Let us first compute the sti�ness of this spring.

Applying Hooke’s Law with F = 5, x = 1, we get k = 5 (N/m).

Now, the work required is

W =

∫
b

a

F(x)dx =

∫
1.8

0

5xdx =
5x2

2

]1.8

0

= 8.1 (N ·m).



5 Work and energy

Let us assume that an object of massmmoves along the x axis as a result of

the force F(t) applied in the direction of motion.

The motion of the object is described by

X its position x(t) at the time t;

X its instantaneous velocity v(t) = x ′(t);

X its instantaneous acceleration a(t) = v ′(t).

Newton’s Second Law of Motion: If an object of massm is moving as a

result of a force F applied to it, then that object undergoes an acceleration

a(t) =
F(t)

m
.

This means that the massm, the force F, and some initial data (e.g. the

position x(0) and the velocity v(0) at t = 0) completely determine the

movement of the object.



5 Work and energy

Now, suppose that

X at the initial moment t0 the object is at the position x(t0) = x0
moving with the initial velocity v(x0) = v0;

X at the final moment t1, we have x(t1) = x1 and v(x1) = v1.

The work of the force moving the object is
x1∫
x0

F(x)dx. Recalling that the

position x is a function of the time t, we get

W =

∫
x(t1)

x(t0)

F(x)dx =

∫
t1

t0

F(x(t))x ′(t)dt =

∫
t1

t0

ma(t)v(t)dt

=

∫
t1

t0

mv ′(t)v(t)dt =

∫
v(t1)

v(t0)

mvdv =
mv2

2

]v1

v0

=
mv2

1

2
−

mv2
0

2
.

The quantity mv2

2
is called the kinetic energy of an object.

We just established a famous law from physics:

the work performed by the force on the object is equal to

the change in the kinetic energy of the object.



6 Integrals and centre of gravity

Consider a lamina (a flat object thin enough to be viewed as a 2d plane

region), which we suppose homogeneous (composed uniformly throughout)



6 Integrals and centre of gravity

It can be shown that each lamina has a centre of gravity, that is, a point

(x̄, ȳ) such that the e�ect of gravity on the lamina is equivalent to that of a

single force acting at the point (x̄, ȳ).

For a symmetric lamina, like a circle, or a square, the centre of gravity

coincides with the symmetry centre, but for a more complex shape it is not

as obvious.



For instance, what is the centre of gravity of Europe?

Many places claim this title. According to the Guinness World Records, the

winner is located in... Lithuania!



Another centre of gravity:



And one more:



6 Integrals and centre of gravity

From basic mechanics, one shows that for a lamina whose mass is localised

at finitely many points A1, . . . , An (with masses m1, . . . , mn), its centre of

gravity M is determined from the equilibrium conditions

m1(
−−→
OA1 −

−−→
OM) +m2(

−−→
OA2 −

−−→
OM) + · · · +mn(

−−−→
OAn −

−−→
OM) = 0.

For a general lamina, we have to “sum over infinitely many points”. As

usual, this is done by integrating.

Let us first compute the centre of gravity of a lamina occupying the region

bounded by a graph y = f(x), the x-axis, and the lines x = a and x = b.

x

y



6 Integrals and centre of gravity

Let us divide the interval [a, b] into many small parts, approximating the

lamina by a union of rectangles.

For each small rectangle,

X its centre of gravity is at the point (x∗
k
, 1
2
f(x∗

k
)), where x∗

k
is the

midpoint of its base;

X its mass is ∆mk = δf(x∗
k
)∆xk, where δ is the density of our lamina

(i.e., its mass per unit area).

So, the gravity centre equilibrium conditions are
n∑

k=1

(x∗k − x̄)δf(x∗k)∆xk = 0,

n∑
k=1

(

1

2
f(x∗k) − ȳ

)

δf(x∗k)∆xk = 0.

As the mesh size of the partition of [a, b] gets smaller, the equations take

the limit form∫
b

a

(x− x̄)δf(x)dx = 0,

∫
b

a

(

1

2
f(x) − ȳ

)

δf(x)dx = 0.



6 Integrals and centre of gravity

As the mesh size of the partition of [a, b] gets smaller, the equations take

the limit form∫
b

a

(x− x̄)δf(x)dx = 0,

∫
b

a

(

1

2
f(x) − ȳ

)

δf(x)dx = 0.

Recalling that x̄ and ȳ are constants, these can be wri�en as∫
b

a

δxf(x)dx = x̄

∫
b

a

δf(x)dx,

∫
b

a

1

2
δ(f(x))2 dx = ȳ

∫
b

a

δf(x)dx.

Examining these formulas, we notice that:

X the constant factor δ > 0 can be dropped;

X
b∫
a

f(x)dx is the area of the lamina.

Finally, we get the formulas

x̄ =

∫
b

a
xf(x)dx

area of the lamina
, ȳ =

1

2

∫
b

a
f(x)2 dx

area of the lamina
.



6 Integrals and centre of gravity

Example. Assume that the lamina is a half-circle 0 6 y 6
√
1− x2. We have

x̄ =

∫
1

−1
x
√
1− x2 dx

area of the lamina
, ȳ =

1

2

∫
1

−1
1− x2 dx

area of the lamina
.

X Since x̄ is proportional to the integral of an odd function x
√
1− x2, it

is zero.

X For ȳ, we have

ȳ =

1

2

∫
1

−1
1− x2 dx
1

2
π

=
x− x3

3

]1

−1

π
=

1− 1

3
+ 1− 1

3

π
=

4

3π
.

So, the centre of gravity of our half-circle is situated at the point (0, 4

3π
).

Exercise. Compute
∫
b

a
x
√
1− x2 dx.


