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1 Computing definite integrals

We have seen that definite integrals, and hence areas, can be computed

using indefinite integrals:

Theorem 4 (The Fundamental Theorem of Calculus, part 1). If f is

continuous on [a, b], and F is any antiderivative of f on [a, b], then∫b
a

f(x)dx =

∫
f(x)dx

∣

∣

∣

∣

b

a

.

This means that computation rules for definite integrals follow from those

for indefinite integrals.

Certain rules, like linearity, are transported in a straightforward manner.

Another example is integration by parts:

Theorem 5 (Integration by parts). Suppose that F and G are

antiderivatives of the continuous functions f and g on [a, b]. Then∫b
a

[f(x)G(x)]dx = F(x)G(x)|ba −

∫b
a

[F(x)g(x)]dx.



1 Computing definite integrals

Theorem 5 (Integration by parts). Suppose that F and G are

antiderivatives of the continuous functions f and g on [a, b]. Then∫b
a

[f(x)G(x)]dx = F(x)G(x)|ba −

∫b
a

[F(x)g(x)]dx.

Example.∫1
0

arctan xdx = [x arctan x]10 −

∫1
0

x

1+ x2
dx

= 1 ·
π

4
− 0 · 0−

[

1

2
ln(1+ x2)

]1

0

=
π

4
−

1

2
(ln(1+ 12) − ln(1+ 02)) =

π

4
−

1

2
ln(2) ≈ 0.44.

Note that 1+ x2 > 0 on [0, 1], so that the function 1
2 ln(1+ x2) is well

defined, and is the primitive of x
1+x2 on [0, 1].



2 Substitution for definite integrals

Substitution for definite integrals is slightly more delicate, since one needs

to take care of the integration limits.

There are two ways to deal with it.

Method 1. Use u-substitutions only on the level of indefinite integrals:∫b
a

f(g(x))g ′(x)dx = [F(g(x))]ba ,

where F =
∫
f(x)dx.

Method 2. A somewhat more direct computation is also possible:

Theorem 6 (u-substitution). Suppose that f is continuous on [a, b] and

takes values in [c, d], and g and g ′ are continuous on [c, d]. Put

F =
∫
f(x)dx. Then∫b

a

[f(g(x))g ′(x)]dx =

∫g(b)
g(a)

f(u)du.



2 Substitution for definite integrals

Example 1. Let us use the first method to evaluate

∫2
0

x(x2 + 1)3 dx.

To compute the corresponding indefinite integral, we denote u = x2 + 1, so

that du = 2xdx, and∫
x(x2 + 1)3 dx =

1

2

∫
u3 du =

u4

8
+ C =

(x2 + 1)4

8
+ C.

Therefore,∫2
0

x(x2 + 1)3 dx =

[∫
x(x2 + 1)3 dx

]2

0

=

[

(x2 + 1)4

8

]2

0

=
625

8
−

1

8
= 78.



2 Substitution for definite integrals

Let us use the 2nd method to evaluate the same integral

∫2
0

x(x2 + 1)3 dx.

That is, we start with the substitution, which is here u(x) = x2 + 1, so that

X du = 2xdx;

X u(0) = 1;

X u(2) = 5.

Therefore,∫2
0

x(x2 + 1)3 dx =
1

2

∫5
1

u3 du =
1

2

[

u4

4

]5

1

=
1

2

(

54

4
−

14

4

)

= 78.



2 Substitution for definite integrals

Example 2. Let us evaluate

∫3
1

cos(π/x)

x2
dx.

We put u(x) = π
x , so that

X du = − π
x2 dx, in other words, 1

x2 dx = − 1
π du;

X u(1) = π;

X u(3) = π/3.

Therefore,∫3
1

cos(π/x)

x2
dx = −

1

π

∫π/3

π

cosudu

= −
1

π
sinu

]π/3

π

= −
1

π
(sin(π/3) − sinπ) = −

√
3

2π
≈ −0.276.



2 Substitution for definite integrals

Example 3. Let us evaluate

∫π/4

0

√
tan x

1

cos2 x
dx.

We put u = tan x, so that

X du = 1
cos2 x

dx;

X u(0) = 0;

X u(π/4) = 1.

Therefore, ∫π/4

0

√
tanx

1

cos2 x
dx =

∫1
0

√
udu =

u3/2

3/2

]1

0

=
2

3
.



2 Substitution for definite integrals

Example 4. Let us prove, without evaluating integrals, that∫π/2

0

sinn xdx =

∫π/2

0

cosn xdx.

In the second integral, we put u = π
2 − x, so that

X du = −dx;

X u(0) = π/2, u(π/2) = 0;

X cos x = cos(π/2− u) = sinu.

Therefore, ∫π/2

0

cosn xdx = −

∫0
π/2

sinn udu =

∫π/2

0

sinn xdx.

B Here using Method 1, i.e. first computing indefinite integrals∫
sinn xdx and

∫
cosn xdx, would be much more tedious.

Exercise. Compute
∫
sin2 xdx and

∫
sin3 xdx.



2 Substitution for definite integrals

Example 5. Let us evaluate

∫1
−1

1

1+ x2
dx.

Put u(x) = 1
x
, so that

X du = − 1
x2 dx, in other words, du = −u2 dx and dx = − 1

u2 du;

X u(−1) = −1;

X u(1) = 1;

X
1

1+x2 = 1
1+(1/u)2

= u2

1+u2 .

Therefore,∫1
−1

1

1+ x2
dx = −

∫1
−1

u2

1+ u2

1

u2
du = −

∫1
−1

1

1+ u2
du,

so the integral is equal to its negative and hence equal to zero.

But
1

1+ x2
> 0 on [−1, 1] implies

∫1
−1

1

1+ x2
dx > 0.

How is it possible? It happened because u(x) = 1
x was not defined on all

the interval [−1, 1], having a singularity at x = 0.



2 Substitution for definite integrals

The right way to compute

∫1
−1

1

1+ x2
dx is to recognise the derivative of

arctan:

∫1
−1

1

1+ x2
dx = [arctan x]1−1 = arctan(1)− arctan(−1) =

π

4
−(−

π

4
) =

π

2
.


