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1 Areas: reminder

Let us summarise the (very general!) definition of the area under the graph

of a “nice” function f(x) on [a, b], seen in the last lecture.

For integers N ge�ing larger and larger, do the following:

1) Divide [a, b] intoN equal subintervals of size ∆N = b−a
N

.

2) Choose some points x∗1, x
∗

2, . . . , x
∗

N, one in each subinterval.

3) Approximate the area under the curve y = f(x) restricted to the kth

subinterval Ik by the area of the rectangle ∆N × f(x∗k).

(That is, you approximate the values of f(x) on Ik by f(x∗k).)

4) Compute the total area
∑N

k=1 f(x
∗

k)∆N of these small rectangles.

As N gets larger, these sums turn out to get closer to some number A,

which is declared to be the area we are looking for:

A = lim
N→+∞

N∑

k=1

f(x∗k)∆N.



1 Areas: reminder

A = lim
N→+∞

N∑

k=1

f(x∗k)∆N.

For familiar plane figures, this definition yields the familiar formulas.

Example. A rectangle of size b× c can be seen as the plane figure under the

graph of y = c on the interval [0, b].

In this case, f(x∗k) = c for any choice of the points x∗k, so
N∑

k=1

f(x∗k)∆N =

N∑

k=1

c∆N = c

N∑

k=1

∆N = cN
b− 0

N
= bc.

In particular,

A = lim
N→+∞

N∑

k=1

f(x∗k)∆N == lim
N→+∞

bc = bc.

We thus recover the familiar formula for the area of a rectangle.



2 Integration: Riemann sums

For some purposes, having all subintervals of the same length ∆N is not

optimal. To remedy this, we shall increase the generality of the definition of

area even more, and consider arbitrary points x1, x2, . . . , xN−1 that divide

[a, b] intoN subintervals of lengths

∆N;1 = x1 − a, ∆N;2 = x2 − x1, . . . , ∆N;N = b− xN−1.

To make sure that the sums we compute do

approximate the area under the curve, we

shall require the mesh size max
k

∆N;k of our

partitions into subintervals to get close to

zero as N increases. x

y

Definition. A function f is (Riemann) integrable on [a, b] if the limit
∫b

a

f(x)dx = lim
max
k

∆N;k→0

N∑

k=1

f(x∗k)∆N;k

exists, and does not depend on the choices of partitions ∆N;k & points x∗k.

In such case, this limit is called the definite integral of f(x) on [a, b].



2 Integration: Riemann sums

Definition. A function f is (Riemann) integrable on [a, b] if the limit
∫b

a

f(x)dx = lim
max
k

∆N;k→0

N∑

k=1

f(x∗k)∆N;k

exists, and does not depend on the choices of partitions ∆N;k & points x∗k.

In such case, this limit is called the definite integral of f(x) on [a, b].

Clearly, for an integrable function f,

∫b

a

f(x)dx is the (net signed) area

between the curve y = f(x) on [a, b] and the x-axis.

In particular, if you want to compute an area using Riemann sums, you may

choose the partitions ∆N;k & the points x∗k which make your computation

the easiest possible.

The integration symbols
∫
and dx can be viewed as the “limit forms” of

∑

and ∆N;k respectively.



2 Integration: Riemann sums

Definition. A function f is (Riemann) integrable on [a, b] if the limit
∫b

a

f(x)dx = lim
max
k

∆N;k→0

N∑

k=1

f(x∗k)∆N;k

exists, and does not depend on the choices of partitions ∆N;k & points x∗k.

In such case, this limit is called the definite integral of f(x) on [a, b].

At this point, the definition does not seem particularly helpful, for the

following reasons:

1) Whether any non-constant function is integrable at all is a mystery.

2) Even if some functions are, it is absolutely unclear how to compute the

scary limit from the definition.

3) Finally, why do we use the same symbol for these strange limits and

for antiderivatives? Aren’t there enough symbols in maths?

We shall start answering these questions today.



3 Integrability

It is not easy to determine precisely which functions are integrable. The

good news is that all “reasonably nice” functions are integrable:

Theorem. For a function f on [a, b] to be integrable, it su�ices to be:

X continuous;

X or, more generally, piecewise defined, continuous on each piece, and

having removable or jump continuities at the gluing points of the

pieces.

Before explaining how to compute definite integrals, we shall list their

elementary properties.



4 Properties of definite integrals

Definite integrals, like indefinite ones, behave well w.r.t. scalar factors,

sums, and di�erences:

Theorem 1. Suppose that both functions f and g are integrable on [a, b].

Let c be a constant. Then the functions cf, f + g, and f− g are integrable,

and ∫b

a

cf(x)dx = c

∫b

a

f(x)dx,

∫b

a

(f(x)± g(x))dx =

∫b

a

f(x)dx±
∫b

a

g(x)dx.

More generally, we have
∫b

a

(c1f1(x) + · · · + cnfn(x))dx = c1

∫b

a

f1(x)dx+ · · · + cn

∫b

a

fn(x)dx.

These properties follow from the corresponding properties of sums and

limits.



4 Properties of definite integrals

To simplify various formulas, it is beneficial to define the integral symbol
∫b
a

beyond the case a < b we have been considering now, as follows:

Definition.

X If a is in the domain of f, define

∫a

a

f(x)dx = 0.

X If f is integrable on [a, b], define

∫a

b

f(x)dx = −

∫b

a

f(x)dx.

The former formula is consistent with the intuition of areas: on the interval

of zero length, the net signed area must be zero.

The la�er formula is a useful convention, although in some cases it has

physical meaning: if f(x) is the gravity force between the unit masses

placed at the point x and at the origin, then
∫b
a f(x)dx is the work required

to move the mass from a to b. Of course, moving it in the opposite direction

would require negative work on our side, since it will all be done by the

gravity!



4 Properties of definite integrals

Theorem 2. Suppose that f is integrable on an interval containing a, b, c.

Then, no ma�er how the points a, b, c are ordered, we have
∫c

a

f(x)dx =

∫b

a

f(x)dx +

∫c

b

f(x)dx.

This result is obvious from the area point of view: for a < b < c, the total

area under the graph on [a, c] is the sum of the areas on [a, b] and on [b, c].

Theorem 3. If f and g are integrable on [a, b], and f(x) > g(x) for all x in

[a, b], then
∫b

a

f(x)dx >

∫b

a

g(x)dx.

In particular, if f is integrable on [a, b], and f(x) > 0 on [a, b], then
∫b
a f(x)dx > 0.

These results also have a clear interpretation in terms of areas.



5 The fundamental theorem of calculus

Our scary definition of the area has several advantages:

X It works for very general plane shapes.

X It leads to mathematically rigorous proofs of intuitive properties of the

area.

X It can be adapted to define volumes, lengths, masses etc.

However, computing Riemann sums for anything more complicated than a

constant function is a nightmare!

In practice, definite integrals (and areas) are evaluated using the following

deep result, which is at the heart of calculus, relating di�erential and

integral calculi, or else tangent line and area computation.



5 The fundamental theorem of calculus

Theorem 4 (The Fundamental Theorem of Calculus, part 1). If f is

continuous on [a, b], and F is any antiderivative of f on [a, b], then
∫b

a

f(x)dx = F(b) − F(a).

That is, if you know an antiderivative of f, you can easily compute the

definite integral, and hence the area under the graph of f, on any interval!

Example. As an antiderivative of x2 we can choose x3

3
. So, the area under

the graph y = x2 on [0, 1] is
∫1

0

x2 dx =
13

3
−

03

3
=

1

3
.

This coincides with the result obtained using Riemann sums. Even be�er:

we see that the area under the graph y = x2 on any interval [a, b] is
1
3
(b3 − a3).

Later we shall explain where this connexion between integrals and

derivatives comes from. For the moment, we shall keep discussing the

meaning and variations of the theorem.



5 The fundamental theorem of calculus

Theorem 4 (The Fundamental Theorem of Calculus, part 1). If f is

continuous on [a, b], and F is any antiderivative of f on [a, b], then
∫b

a

f(x)dx = F(b) − F(a).

There are several conventions to denote F(b) − F(a) more compactly:

F(x)]
b
a , [F(x)]

b
a , F(x)|

b
a .

So, one can write for example
∫b
a x2 dx = 1

3
x3|ba.

Observe that the expression F(b) − F(a) does not depend on the choice of

the antiderivative (where we can add an arbitrary constant), since

(F(b) + C) − (F(a) + C) = F(b) − F(a).

So, one can reformulate the theorem as
∫b

a

f(x)dx =

∫

f(x)dx

∣

∣

∣

∣

b

a

.



5 The fundamental theorem of calculus

Theorem 4 (The Fundamental Theorem of Calculus, part 1). If f is

continuous on [a, b], and F is any antiderivative of f on [a, b], then
∫b

a

f(x)dx =

∫

f(x)dx

∣

∣

∣

∣

b

a

.

Note that here

X the definite integral
∫b
a
f(x)dx is a number;

X the indefinite integral
∫
f(x)dx is a family of functions.

B It is important to apply the fundamental theorem of calculus only

where it is applicable.

E.g. if f(x) = 1
x2 , so that F(x) = −1

x
, then applying our theorem

mechanically on [−1, 1] would yield
∫1

−1

dx

x2
= −

1

x

]1

−1

= −1− 1 = −2,

which is clearly impossible for a positive f!

The problem is that our f is not even defined everywhere on [−1, 1].



5 The fundamental theorem of calculus

Examples. Applying the theorem we just proved, we can evaluate the

following integrals:

1∫

−2

(x2 − 6x + 12)dx =
x3

3
− 3x2 + 12x

]1

−2

=

=
1

3
− 3+ 12−

(

−
8

3
− 12− 24

)

= 48.

π/2∫

−π/2

cos θdθ = sinθ]
π/2

−π/2
= 1− (−1) = 2.

4∫

1

1√
x
dx = 2

√
x
]4

1
= 4− 2 = 2.



5 The fundamental theorem of calculus

π/4∫

0

(

3x2 +
1

cos2 x

)

dx = x3 + tan x
]π/4

0
=

π3

64
+ 1.

1∫

0

|2x − 1|dx =

1/2∫

0

|2x − 1|dx+

1∫

1/2

|2x − 1|dx =

=

1/2∫

0

(1− 2x)dx +

1∫

1/2

(2x − 1)dx = x− x2
]1/2

0
+ x2 − x

]1

1/2
=

=

(

1

2
−

1

4

)

− (0− 0) + (1− 1) −

(

1

4
−

1

2

)

=
1

2
.



5 The fundamental theorem of calculus

There are many applications in which the fundamental theorem of calculus

has a clear meaning for real life questions, all following the following

general principle:

Integrating the rate of change of F(x) over [a, b] produces the total change

of the value of F(x) as x increases from a to b.

X If s(t) is the position of the particle in rectilinear motion, then

s′(t) = v(t) is the instantaneous velocity, and integrating v(t)

computes the displacement between the given times.

X If P(t) is the population (of plants, animals, people) at time t, then

P ′(t) = r(t) is the rate of change of population, and its integral is the

total change of population.

X If p(x) is the profit generated by producing and selling x units of

product, then p ′(x) = m(x) is the “marginal profit” (extra profit

resulting from producing and selling one extra unit), and its integral

from a to b is the change of profit when the production level increases

from a to b units.


