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1 How can one compute areas?

Now that we know the basic methods for computing integrals, we will

discuss what they can be useful for. The main application, which motivated

the whole integral calculus, was computing areas delimited by curves. This

clearly boils down to computing areas under curves.

An intuitive and e�icient method for computing areas of figures is the

method of exhaustion, used in Ancient Greece since 5th century BC. It

consists in approximation by glued rectangles and triangles, whose area we

know how to compute.

For areas under curves, this method looks as follows:
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2 Areas: example

Example. Let us compute the area under the curve y = x2 when x varies

from 0 to 1.

To approximate this curved shape by union of rectangles, split the segment

[0, 1] intoN segments of length 1/N:

[0, 1/N] , [1/N, 2/N] , . . . , [(N− 1)/N, 1].

The rectangle over each segment [k/N, (k+ 1)/N] delimited by the curve

y = x2 has width 1/N and height (k/N)2 (the value of f(x) = x2 at k/N).

This is so because the function f(x) = x2 is increasing on [0, 1].

The total area of these rectangles is
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which tends to
2
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=
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3
asN increases without bound.

So, it is sensible to define the area under y = x2 on [0, 1] to be 1/3.

It is intuitively plausible (but not obvious!) that

1) this method will work for any continuous function on an interval;

2) approximation by other families of rectangles yields the same value.



3 Digression: sigma notation

As it should have become apparent by now, to deal with areas, we shall be

using long sums with many terms. It is beneficial to get used to the relevant

mathematical notation.

Suppose that we have a function f(x), and need to compute the sum

f(m) + f(m + 1) + · · · + f(n).

In such a case, the symbol
∑

(coming from the capital Greek le�er Σ

(sigma) that usually denotes sums) is used:
n∑

k=m

f(k) = f(m) + f(m + 1) + · · · + f(n).

In this formula,

X k is a summation index, or summation variable;

X the “k = m” below Σ is the starting value of k;

X “n” above Σ is the ending value of k.



3 Digression: sigma notation

Example. The formula for the sum of squares we used earlier is wri�en as
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k=1
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6
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Theorem. The following summation formulas are true:
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These formulas are o�en used in practice, so it is good to remember them.

For n = N− 1, the second claim yields the formula we used:
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3 Digression: sigma notation

Scalar factors, sums, and di�erences behave well with the sigma notation:
n∑
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Using the basic summation formulas and properties of sums, we can

compute more sums, e.g.
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Exercise. Compute

n∑

k=1

(2k− 1)2,

n∑

m=3

m2(m − 2).



4 Areas: general case

Let us describe the general recipe for computing the area A under a function

f(x) on [a, b]. For this to make sense we need to have f(x) > 0 on [a, b].

We will approximate the area by N rectangles of equal width ∆N =
b− a

N
.

That is, we divide [a, b] intoN subintervals of equal length by the points

x0 = a, x1 = a+ ∆N, x2 = x1 + ∆N, . . . xN−1 = xN−2 + ∆N, xN = b.

Let us select arbitrary points x∗
1
, . . . , x∗

N
in each of these subintervals.

Each point x∗
k
defines a rectangle ∆N × f(x∗

k
) which approximates the area

under the graph on [xk−1, xk].

As an approximation to the whole area A, we take

f(x∗1)∆N + · · · + f(x∗N)∆N =

N∑

k=1

f(x∗k)∆N.

Definition. The area under the curve y = f(x) on [a, b] is defined as

lim
N→+∞

N∑

k=1

f(x∗k)∆N.



4 Areas: general case

Definition. The area under the curve y = f(x) on [a, b] is defined as

lim
N→+∞

N∑

k=1

f(x∗k)∆N.

There are several things in this definition you should be unhappy about:

X We are using the limit lim
N→+∞

, where N is an integer; this is di�erent

from the limits lim
x→+∞

that we considered before. Fortunately, the

definitions and the behaviour of these two types of limits are very

close, so you can work with lim
N→+∞

as if it were lim
x→+∞

.

X It is true (but not obvious!) that, for a continuous f,

1) the limit in the definition does exist;

2) a di�erent choice of the points x∗
k
yields the same value.

The most common choices for the x∗
k
are xk−1, xk, and

xk−1+xk

2
.

If we do not assume f(x) > 0, we get the definition of the net signed area

between the curve y = f(x) and the x-axis, i.e., the di�erence between the

area above the curve and the di�erence below the curve.


