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1 Integration vs di�erentiation

From our first lecture on integration you might have felt that, even though
integrals and derivatives are dual objects, there is an important di�erence
between computing them. It is o�en formulated as follows:

Di�erentiation is mechanics, integration is art.

Indeed, di�erentiation is algorithmic: if you learned

X the derivatives of basic functions, and

X the key rules for gluing them together (product, quotient, chain and
inverse function rules),

then you are able to di�erentiate most functions one meets in sciences.

There are just a few tricks to simplify computations, like logarithmic
di�erentiation.



1 Integration vs di�erentiation

Di�erentiation is mechanics, integration is art.

Integration, on the contrary, comes without any general algorithms. We will
learn some methods, and in each example it is up to you to choose:
X the integration method (u-substitution, integration by parts etc.), and
X auxiliary data for the method (e.g., the base change u = g(x) in

u-substitution).
Even worse:
X di�erent methods might work for the same problem, with di�erent

e�iciency;
X the integrals of some elementary functions are not elementary, e.g.∫

e−x2
dx.

You can find more details by clicking here.

The recipe is
X have enough practice;
X take each problem as a challenge (like a crosswords puzzle!).

https://www.danielmathews.info/2015/03/01/the-lost-art-of-integration-impossibility/


2 Mnemonics for u-substitution

Theorem 3 (u-substitution). Suppose that F(x) is an antiderivative of
f(x). Then the function f(g(x))g ′(x) is integrable, and∫

[f(g(x))g ′(x)]dx = F(g(x)) + C.

To present this rule in a more intuitive form, we need to recall an alternative
notation for derivatives: if u = g(x), we write g ′(x) = du

dx , or else
du = g ′(x)dx.

B This is an equation for numbers: du and dx are not numbers, but just
placeholders for easy book-keeping.

Now, in Theorem 3, put u = g(x). You can view it as a change of variables
x ; u. The integral

∫
f(u)du can then be evaluated in two ways:

X
∫
f(u)du = F(u) = F(g(x)), where F is an antiderivative f;

X
∫
f(u)du =

∫
f(g(x))g ′(x)dx.

Theorem 3 simply states that the two methods yield the same result, up to a
constant.



3 More examples of u-substitution

Example 1. Let us evaluate the integral
∫

1
x lnx dx.

Pu�ing u = ln x, we get du =(ln x) ′dx = dx
x , so∫

1

x ln x
dx =

∫
du

u
= lnu+ C = ln(ln x) + C.

B This example illustrates a general principle: it is o�en reasonable to
choose as u = g(x) the “unpleasant part” of the function you are
integrating.



3 More examples of u-substitution

Example 2. Let us evaluate the integral
∫
x2
√
x− 1 dx.

Here the “unpleasant part” is
√
x− 1. Pu�ing u =

√
x− 1, we get

u2 = x− 1, so 2udu = dx, and∫
x2
√
x− 1 dx =

∫
(u2 + 1)2 · u · 2udu =

∫
(u4 + 2u2 + 1) · 2u2 du

=

∫
(2u6 + 4u4 + 2u2)du =

2

7
u7 +

4

5
u5 +

2

3
u3 + C

=
2

7
(x− 1)7/2 +

4

5
(x− 1)5/2 +

2

3
(x− 1)3/2 + C.

B This example illustrates a useful trick: to get a relation between du and
dx, it can be beneficial to first simplify the equality u = g(x).



3 More examples of u-substitution

Example 3. Let us evaluate the integral
∫
(cos x)3 dx.

Here the “unpleasant part” is cos(x), but the substitution u = cos x does
not simplify things, since under the integral sign we are lacking
− sin x = du

dx . So, we should try something else.

Noticing that cos xdx = d(sin x), we put u = sin x and rewrite our integral:∫
(cos x)2 d(sin x) =

∫
(1− (sin x)2)d(sin x) =

∫
(1− u2)du

= u−
u3

3
+ C = sin x−

1

3
(sin x)3 + C.

B In general, to integrate trigonometric functions you o�en need to
manipulate them in di�erent ways, for which you need to know basic
trigonometric formulas!



4 Integration by parts

From the product rule for derivatives, we deduce the second fundamental
integration rule:
Theorem 4 (Integration by parts). Suppose that F(x) and G(x) are
antiderivatives of f(x) and g(x) respectively. Then∫

[f(x)G(x)]dx+

∫
[F(x)g(x)]dx = F(x)G(x) + C.

Proof. product the chain rule, we obtain
(F(x)G(x)) ′ = F ′(x)G(x) + F(x)G ′(x) = f(x)G(x) + F(x)g(x).

This rule is usually applied in the following way:∫
[f(x)G(x)]dx = F(x)G(x) −

∫
[F(x)g(x)]dx.

That is, computing the antiderivative of f(x)G(x) reduces to computing the
antiderivative of F(x)g(x), which can be substantially simpler.

Mnemonics for integration by parts:
∫
GdF = FG−

∫
F dG.



4 Integration by parts

Example 4. Let us evaluate the integral
∫
xex dx.

The obvious decomposition of xex as a product is x · ex.

X For ex, integration and di�erentiation yield the same result ex.

X For x, the derivative x ′ = 1 is simpler that the integral
∫
xdx = x2

2 .

So, it makes sense to apply integration by parts with G(x) = x, f(x) = ex

(in which case g(x) = 1, and we can take F(x) = ex). We get∫
xex dx = xex −

∫
1 · ex dx = xex − ex + C.

Note that if we instead apply integration by parts with f(x) = x, G(x) = ex

(so that F(x) = x2

2 , g(x) = ex), we get∫
xex dx =

x2

2
ex −

∫
x2

2
ex dx,

and we need to compute a more complicated integral!



4 Integration by parts

Example 5. Let us evaluate the integral
∫
x2ex dx.

Using integration by parts with G(x) = x2, f(x) = ex (in which case
g(x) = 2x, and we can take F(x) = ex), we get∫

x2ex dx = x2ex −

∫
2xex dx = x2ex − 2xex + 2ex + C,

since we already know
∫
xex dx.

The same methods works for any polynomial P of degree n, and yields∫
P(x)ex dx =

(
P(x) − P ′(x) + P ′′(x) − · · ·+ (−1)nP(n)(x)

)
ex + C.



4 Integration by parts

Example 6. Let us evaluate
∫

ln xdx.

Since the function ln x is very pleasant to di�erentiate (ln ′ x = 1
x ), we could

try to choose it as one of the factors. The second factor then has to be the
constant function 1.

Using integration by parts with G(x) = ln x, f(x) = 1 (in which case
g(x) = 1

x , and we can take F(x) = x), we get∫
ln xdx = x ln x−

∫
x · 1

x
dx = x ln x− x+ C.

B Trivial factorisations like h(x) = 1 · h(x) and artificial factorisations
like h(x) = x · h(x)

x are sometimes useful in integration by parts.



4 Integration by parts

Example 7. Let us evaluate
∫
ex sin xdx.

Using integration by parts with G(x) = sin x, f(x) = ex (so, g(x) = cos x,
and we take F(x) = ex), we get∫

ex sin xdx = ex sin x−

∫
ex cos xdx.

Now comes the tricky part: let us integrate by parts again, with
G(x) = cos x, f(x) = ex (so, g(x) = − sin x, and we take F(x) = ex):∫

ex cos xdx = ex cos x+
∫
ex sin xdx.

Summarising, we get∫
ex sin xdx = ex sin x− ex cos x−

∫
ex sin xdx,

hence ∫
ex sin xdx =

1

2
ex(sin x− cos x) + C.

Exercise. Compute
∫
ex cos xdx.



5 Choosing between the two methods

We will now look at examples where no integration method is imposed.

Example 8. Compute the integral
∫

sin(ln x)dx.

Approach 1. Let us try to apply a u-substitutions.
In a composition, the “unpleasant part” is o�en the internal function. Here
it is ln x.
Pu�ing u = ln x, so that eu = x, and eu du = dx, we get∫

sin(ln x)dx =

∫
sin(u) eu du.

In Example 7, we computed the la�er integral using integration by parts:∫
eu sinudu =

1

2
eu(sinu− cosu) + C,

so ∫
sin(ln x)dx =

1

2
x(sin(ln x) − cos(ln x)) + C.

Approach 2. Start with an integration by parts. This is le� for you as an
exercise.



5 Choosing between the two methods

Example 9. Compute the integral
∫
x3ex

2
dx.


