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1 More functions

All functions we have seen so far were

X rational functions;

X trigonometric functions and their inverses;

X di�erent combinations thereof.

Today we will extend our kit of basic functions by three more classes, widely

used in sciences:

X irrational power functions;

X exponential functions;

X logarithmic functions.

They are widely used in science, e.g., to describe:

X population growth and spread of disease;

X the magnitude of an earthquake at di�erent distances from the

epicentre;

X perceived loudness of a sound.



2 Power functions

Recall that one defines the expression ap with rational p step by step:

1) For a natural number p = n, put an = a× a× · · · × a (n times).

2) For p = 1
n , use the fact that the nth root function g(x) = x

1
n = n

√
x is

inverse to the nth power function f(x) = xn.

3) When p = m
n is a positive rational number in its reduced form (i.e., m

and n do not have common divisors), put a
m
n = n

√
am.

4) When p = −m
n is a negative rational number in its reduced form, put

a−m
n = 1

a
m
n
.

5) Finally, declare a0 = 1.

For simplicity, we assume a > 0 everywhere above, although some of the

power functions are defined for all a, or all a 6= 0, or all a > 0.



2 Power functions

Now, let us define ap for irrational p.

First, find a sequence p1, p2, . . . of rational numbers approximating p.

For instance, for p = π you may take

p1 = 3, p2 = 3.1, p3 = 3.14, p4 = 3.141, . . .

Then, compute ap1 , ap2 , . . .

These numbers happen to get successively closer to some number

(independent of the chosen approximating sequence for p), called ap.



2 Power functions

Irrational power functions f(x) = xp inherit most properties of rational

power functions:

Theorem. For any a, b > 0 and p, q ∈ R, one has:

X ap+q = apaq, ap−q = ap

aq , a−q = 1
aq ;

X apq = (ap)q;

X (ab)p = apbp,
(

a
b

)p
=

(

ap

bp

)

;

X ap






> 1 if a > 1 & p > 0 or a < 1 & p < 0,

< 1 if a > 1 & p < 0 or a < 1 & p > 0

= 1 if a = 1 or p = 0.

Moreover, the function f(x) = xp is di�erentiable on (0,+∞) infinitely

many times, and

(xp) ′ = pxp−1,

(xp) ′′ = p(p− 1)xp−2,

· · ·
(xp)(n) = p(p− 1) · · · (p+ 1− n)xp−n.



3 Exponential functions

To get a power function, we fixed the power p in ap and let a vary. If

instead we fix a > 0 and let p vary from −∞ to +∞, we get an

exponential function f(x) = ax.

From the properties of powers, we can deduce properties of exponential

functions:

Theorem. Given a > 0, the exponential function f(x) = ax satisfies the

following properties:

X f(x + y) = f(x)f(y) (i.e., f transforms sums into products);

X f is

• increasing form lim
x→−∞

ax = 0 to lim
x→+∞

ax = +∞ if a > 1;

• decreasing form lim
x→−∞

ax = +∞ to lim
x→+∞

ax = 0 if a < 1;

• constant if a = 1: 1x = 1;

X f is continuous.

In particular, if a 6= 1, then the function ax has a horizontal asymptote

x = 0.



3 Exponential functions

Here are the graphs of exponential functions f(x) = ax in three cases:

a > 1, a = 1, a < 1.

x

y

For a < 1 we have ax = (a−1)−x and a−1 > 1, so the graph of f(x) = ax

is obtained from that of f(x) = (a−1)x by symmetry about the y-axis.

Thus in what follows we will mostly consider the case a > 1.



4 Logarithmic functions

We have seen that for a > 1 the function f(x) = ax increases from 0 to

+∞. As a result it has an inverse, called the logarithmic function with

base a, f(x) = loga x. By definition,

y = loga x ⇐⇒ ay = x.

Examples. log10 1000 = 3, log10 0.01 = −2, log2 1024 = 10,

loga a = 1, loga 1 = 0.

The properties of loga follow from that of exponential functions:

Theorem. Given a > 1, the logarithmic function f(x) = loga(x) satisfies

the following properties:

X the domain of f is (0,+∞);

X aloga(x) = x, loga(a
x) = x;

X loga(xy) = loga(x) + loga(y) (loga turns products into sums);

X loga(x/y) = loga(x) − loga(y), loga(1/y) = − loga(y);

X loga(x
p) = p loga(x) and loga(

p
√
x) =

loga(x)
p for any p ∈ R;



4 Logarithmic functions

Theorem. Given a > 1, the logarithmic function f(x) = loga(x) satisfies

the following properties:

X the domain of f is (0,+∞);

X aloga(x) = x, loga(a
x) = x;

X loga(xy) = loga(x) + loga(y) (loga turns products into sums);

X loga(x/y) = loga(x) − loga(y), loga(1/y) = − loga(y);

X loga(x
p) = p loga(x) and loga(

p
√
x) =

loga(x)
p for any p ∈ R;

X loga(b) =
logc(b)

logc(a)
for any a, c > 1, b > 0 (base change rule);

X f is increasing from lim
x→0+

loga(x) = −∞ to lim
x→+∞

loga(x) = +∞;

X f is continuous.

B loga(x+ y) 6= loga(x) + loga(y).

The function loga is also defined for 0 < a < 1. Its properties are analogous

to what we established in the case a > 1, with the word decreasing

replacing increasing.



4 Logarithmic functions

The graph of loga(x) is obtained from that of ax by applying symmetry

about the line y = x:

x

y



5 History of logarithms

Logarithms were introduced by John Napier in the early 17th century to

replace tedious multiplication with (much simpler!) addition, combined

with the use of slide rules or table look-ups for the values of log:

M ·N = 10logM · 10logN = 10logM+logN.

Here log = log10.

Logarithms are equally useful for extracting roots:

n
√
x = 10log(x

1
n ) = 10

1
n log(x).

Altogether, logarithms proved to be indispensable for fast computations,

and tables of logarithms used to be one of the main books that scientists

and engineers would use in everyday life before computers and advanced

calculators arrived.



5 History of logarithms

This story is not as ancient as you might think: logarithmic tables were

extensively used by scientists as late as in the 1960’s.

NASA scientists with their board of calculations, 1961, Life magazine.



5 History of logarithms

A screenshot from Hidden Figures.



5 History of logarithms

Another advantage of logarithms is that they reduce wide-ranging

quantities to smaller scopes. The most famous logarithmic measures in

science are:

X dB (decibel);

X pH (potential of hydrogen);

X Richter scale.



6 Euler’s number

Even though it is not obvious from its definition, the exponential function

f(x) = ax is di�erentiable on R as many times as you wish.

Let us try to compute its derivative:

f ′(x) = lim
h→0

ax+h − ax

h
= lim

h→0

axah − ax

h
= ax lim

h→0

ah − 1

h
= f(x)f ′(0).

Thus, f ′(x) is proportional to f(x), with proportionality coe�icient

f ′(0) = lim
h→0

ah−1
h .

It is intuitively plausible that, when a changes from 1 to +∞, f ′(0)

continuously changes from 0 to +∞.

So, by the Intermediate Value Theorem, it takes the value 1 at some a > 0.

This a turns out to be the Euler’s number e = 2.7182818284590 . . .

We will use the classical notations

exp(x) = ex, ln(x) = loge(x).

These functions are called the natural exponential function and the

natural logarithm.



6 Euler’s number

The number e is irrational.

It can be defined in a number of ways:

1) As the only real number satisfying (ex) ′ = ex, or, equivalently,

(ex) ′|x=0 = 1.

2) e = lim
x→0

(1+ x)
1
x .

3) e =

∞∑

n=0

1

n!
=

1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
+ · · ·

4) As the only real number satisfying

∫e

1

1

t
dt = 1.

And many more!



6 Euler’s number

Let us show that the following definitions coincide:.

1) e is the only real number satisfying (ex) ′|x=0 = 1.

2) e = lim
x→0

(1+ x)
1
x .

Denoting eh − 1 = t, we see that h = ln(1+ t), so

eh − 1

h
=

t

ln(1+ t)
=

1
1
t ln(1+ t)

=
1

ln(1+ t)
1
t

.

Since exponential and logarithmic functions are continuous, we conclude

(ex) ′|x=0 = lim
h→0

eh − 1

h
= lim

t→0

1

ln(1+ t)
1
t

=
1

ln( lim
t→0

(1+ t)
1
t )
.

This equals 1 i� e = lim
x→0

(1+ x)
1
x .



6 Euler’s number

Number of known decimal digits of e:

Date Decimal digits Computation performed by

1690 1 Jacob Bernoulli

1714 13 Roger Cotes

1748 23 Leonhard Euler

1853 137 William Shanks

1871 205 William Shanks

1884 346 J. Marcus Boorman

1949 2,010 John von Neumann (on the ENIAC)

1961 100,265 Daniel Shanks and John Wrench

1978 116,000 Steve Wozniak on the Apple II



7 Derivatives of ax and loga x

Theorem. Given any a > 0, a 6= 1, the functions f(x) = ax and

g(x) = loga(x) are di�erentiable everywhere. We have

(ax) ′ = ax lna, (loga x) ′ =
1

x lna
.

In particular,

(ex) ′ = ex, (ln x) ′ =
1

x
.

Proof. We have seen that (ex) ′ = ex. Using the chain rule, we then deduce

(ax) ′ = ((elna)x) ′ = (eln(a)x) ′ = eln(a)x · (ln(a)x) ′ = ax lna.

The di�erentiation rule for inverse functions now yields

(loga x) ′ =
1

(ay) ′|y=loga x
=

1

aloga x lna
=

1

x lna
.


