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1 What are derivatives good for?

We have seen that derivatives are useful in a wide range of contexts. We

need them to:

1) find the rate of change of a function (e.g., velocity and acceleration);

2) describe tangents to curves;

3) analyse and graph functions;

4) solve optimisation problems (i.e., maximise/minimise a quantity

depending on some parameter).

Today we will comment on some of the above applications, and give two

new ones:

5) Newton’s method for approximating zeroes of functions;

6) L’Hôpital’s rule for computing limits involving indeterminate forms of

type 0/0.



2 Newton’s method

In practice, you may need to solve an equation f(x) = 0:

X algebraically, that is, find a real number c (called a zero of f) satisfying

f(c) = 0;

X or numerically, that is, find an approximation c0 for a zero c of f, in the

sense that |c0 − c| < ε, where ε is the desired precision.

For most functions, only numerical solution is feasible. That is what a

computer does when asked to solve an equation. This su�ices for most

applications.

We have seen one method for solving equations numerically—the bisection

method.





2 Newton’s method

The bisection method applies to any continuous function f, provided that

we have found some a and b with f(a) > 0 > f(b).

It is based on the Intermediate Value Theorem.

This is one of the most universal methods for numerical solution of

equations. However, computers prefer faster methods, like the one we are

about to describe.

The Newton’s method applies to any di�erentiable function f, provided

that we have an initial estimate c0 for one of its zeroes c.

We know that the best linear approximation to f at c0 is the tangent line:
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2 Newton’s method

We know that the best linear approximation to f at c0 is the tangent line

y = f ′(c0)(x− c0) + f(c0).

The zero of this linear function is found by solving the equation

0 = f ′(c0)(x − c0) + f(c0).
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If f ′(c0) 6= 0, then the only solution is

c1 = c0 −
f(c0)

f ′(c0)
.

In most cases, c1 approximates the desired zero c be�er than c0.



2 Newton’s method

Iterating this procedure, we get a sequence of numbers c0, c1, c2, . . . ,

defined recursively by

cn+1 = cn −
f(cn)

f ′(cn)
.

In many cases, these numbers approach the target zero c of f very fast.

Good example. The equation x3 − x− 1 = 0 can be solved algebraically, but

the formulas involved are too complicated.

Let us solve the equation x3 − x− 1 = 0 numerically. Since

f ′(x) = 3x2 − 1, Newton’s method suggests

cn+1 = cn −
c3n − cn − 1

3c2n − 1
=

2c3n + 1

3c2n − 1
.

Starting from the initial approximation c0 = 1.5, we get

c1 ≈ 1.34782609,

c2 ≈ 1.32520040,

c3 ≈ 1.32471817,

c4 ≈ 1.32471796,



2 Newton’s method

Let us solve the equation x3 − x− 1 = 0 numerically. Since

f ′(x) = 3x2 − 1, Newton’s method suggests

cn+1 = cn −
c3n − cn − 1

3c2n − 1
=

2c3n + 1

3c2n − 1
.

Starting from the initial approximation c0 = 1.5, we get

c1 ≈ 1.34782609,

c2 ≈ 1.32520040,

c3 ≈ 1.32471817,

c4 ≈ 1.32471796,

c5 ≈ 1.32471796,

a�er which within our precision nothing changes.

From c5 = c4 −
f(c4)

f ′(c4)
and c4 ≈ c5, we deduce

f(c4)

f ′(c4)
≈ 0. Since

f ′(c4) = 3c2
4
− 1 ≈ 4.26463302 is far from zero, this yields f(c4) ≈ 0.

So, c4 is very likely to be close to a zero of f.



2 Newton’s method

Bad example. Let us take f(x) = 3
√
x. Newton’s method yields

cn+1 = cn −
3
√
cn
1

3
3
√

c2
n

= cn − 3cn = −2cn.

So, whichever non-zero value c0 we start with, we get cn = (−2)nc0,

which of course gets larger and larger in magnitude, and does not converge.



2 Newton’s method

Drawbacks of Newton’s method:

X works for di�erentiable functions f (while for the bisection method a

continuous f su�ices);

X problems when f ′(cn) = 0 at some step;

X an initial approximation c0 of a zero c is needed;

X problems for “bad” f (as in the example above) and “bad” c0.

The initial approximation can be chosen using the bisection method.

Advantages of Newton’s method:

X works very fast in most cases: e.g., for a zero c of multiplicity 1 and a

good initial guess c0, the convergence is at least quadratic (roughly,

the number of correct digits doubles in every step);

X easy computation.

These advantages are su�icient for implementing the method in all

computers.

Newton’s method has numerous variations and generalisations.



3 L’Hôpital’s rule

The derivative is defined as the limit of the di�erence quotient. So, we

typically use limits for computing derivatives. However things can work the

other way round: as some of you know from school, we sometimes use

derivatives for computing limits.

Theorem (L’Hôpital’s Rule). Assume that the functions f and g satisfy:

1) f and g are di�erentiable on (a, b), except possibly at c;

2) lim
x→c

f(x) = lim
x→c

g(x) = 0 or ±∞;

3) g ′(x) 6= 0 for all x ∈ (a, c) ∪ (c, b);

4) lim
x→c

f ′(x)

g ′(x)
exists.

Then lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g ′(x)
.



3 L’Hôpital’s rule

Theorem (L’Hôpital’s Rule). Assume that the functions f and g satisfy:

1) f and g are di�erentiable on (a, b), except possibly at c;

2) lim
x→c

f(x) = lim
x→c

g(x) = 0 or ±∞;

3) g ′(x) 6= 0 for all x ∈ (a, c) ∪ (c, b);

4) lim
x→c

f ′(x)

g ′(x)
exists.

Then lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g ′(x)
.

Example.

lim
x→0

sin(x2 + x3)

arcsin(x2)
= lim

x→0

(sin(x2 + x3)) ′

(arcsin(x2)) ′
= lim

x→0

cos(x2 + x3) · (2x + 3x2)
1√

1−x4
· 2x

=
cos(0)

1√
1−04

· lim
x→0

2+ 3x

2
=

1

1
· 2
2
= 1.

The functions f(x) = sin(x2 + x3) and g(x) = arcsin(x2) clearly satisfy all

the conditions of L’Hôpital’s rule.



3 L’Hôpital’s rule

B You can use L’Hôpital’s rule to memorise the remarkable limits

lim
x→0

sin(x)

x
= lim

x→0

(sin(x)) ′

x ′ = lim
x→0

cos(x)

1
=

cos(0)

1
= 1,

lim
x→0

1− cos(x)

x2
= lim

x→0

sin(x)

2x
=

1

2
lim
x→0

sin(x)

x
=

1

2
.

However, this does not prove these limits, since we are using the derivatives

sin ′ = cos and cos ′ = − sin, whose proof exploits our remarkable limits!



4 Derivatives and graphing

You might wonder why we care about analysing and graphing functions by

hand when computers and calculators can do it faster and o�en be�er than

us. An example of a powerful computer program for working with functions

can be found here: https://www.geogebra.org/graphing

Besides understanding how such programs work, a basic knowledge of

calculus allows us to interpret their results. For instance, given the graph

below, you need to study the behaviour of your function at 0 to understand

whether it has a vertical asymptote x = 0, or whether the value at 0 is finite

but too large for the chosen viewing window.
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4 Derivatives and graphing

Similarly, if you zoom these two graphs out, you will not distinguish them.

You will need to determine, for instance, the zeroes of the two functions to

feel the di�erence between them:
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5 Derivatives and rectilinear motion

One of the original motivations for introducing derivatives was to handle

velocity and acceleration. To cover these concepts in full generality, we need

to work with vector-valued functions. But real-valued functions also apply

in practice—to study rectilinear motion, i.e., motion along a line.

Consider for instance the height of an object thrown vertically, either

upward or downward. From physics, you know that this motion is

parabolic, and can be described by the following functions:

height h(t) = at2 + bt+ c,

velocity h ′(t) = 2at + b,

acceleration h ′′(t) = 2a,

where a, b, c ∈ R are parameters. Here t is the time variable.

From physics you know that in this situation the acceleration is due to

gravity only, and near the surface of the Earth its value is ≈9.8m/s2. So,

you can take a = −4.9m/s2. (The sign is negative since gravity

acceleration is directed downward).



5 Derivatives and rectilinear motion

The motion equation becomes

h(t) = −4.9t2 + bt+ c.

We can measure the height from the point where the object was thrown,

and start measuring time when this happened. This means c = h(0) = 0.

The equation of motion now becomes

h(t) = −4.9t2 + bt.

To determine b, you need some extra information. For example, if you are

given the initial velocity v0, then from

b = h ′(0) = v0.

Let us find stationary points of h(t). Equation h ′(t) = 0 means here

−9.8t + b = 0, that is, t = b

9.8
. If the original movement direction was

upward, we get b = v0 > 0, so t = b

9.8
> 0 is a valid value for time.

Looking at the sign of h ′(t) = −9.8t+ b, we see that in this case h(t) has a

local maximum at b

9.8
. This corresponds to what you know from practice: a

ball thrown upward stops at some moment and then falls down.

Exercise. Plot the graph of h(t) for v0 =5m/s2 and v0 =−5m/s2.



6 Derivatives and optimisation

Exercise. In optics, Fermat’s principle of least time declares that a ray of

light travels between two points along the path minimising its travel time.

Deduce from it Snell’s law: The ratio of the sines of the angles of incidence

and refraction equals the ratio of phase velocities in the two media:
sinθ1
sinθ2

=
v1

v2
.

To do this, express the time traveled by the light ray in the picture below as

a function f of x (here d, h1 and h2 are constants), and find its minimum by

computing f ′(x). Explain why this minimum exists.



6 Derivatives and optimisation

Exercise. In optics, Fermat’s principle of least time declares that a ray of

light travels between two points along the path minimising its travel time.

Deduce from it the Law of reflection: In the same medium, the angle of

incidence equals the angle of reflection:

θ1 = θ2.

To do this, express the time traveled by the light ray in the picture below as

a function f of x (here d, h1 and h2 are constants), and find its minimum by

computing f ′(x). Explain why this minimum exists.
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