Lecture 17: Derivatives and extrema

Victoria LEBED, lebed@maths.tcd.ie

MA1S11A: Calculus with Applications for Scientists

November 20, 2017

Zeroes of the derivative

Definition. Suppose that c is a point from the domain of a function f. We say that f has

- ✓ a global minimum at c if f(c) ≤ f(x) for all x from the domain of f;
- ✓ a **global maximum** at c if $f(c) \ge f(x)$ for all x from the domain of f;
- ✓ a local minimum at c if f(c) ≤ f(x) for all x sufficiently close to c;
- ✓ a local maximum at c if $f(c) \ge f(x)$ for all x sufficiently close to c.

Sometimes the word *global* is replaced with *absolute*, and *local* with *relative*. **Extremum** means minimum or maximum.

Theorem 5. If f is defined on (a, b), differentiable at some $c \in (a, b)$, and attains a (local) extremum at c, then f'(c) = 0.

 \bigwedge The converse is false: look again at $f(x) = x^3$ at x = 0. We will see later what additional conditions are needed to claim the converse.

1 Zeroes of the derivative

Definition. Let c be a point from the domain of a function f. It is called

- \checkmark critical if f is not differentiable at c or if f'(c) = 0;
- \checkmark stationary if f'(c) = 0.

Theorem 5 says that a function attains local extrema only at critical points: f has an extremum at $c \implies c$ is critical.

Example 1. The function f(x) = |x| has a global minimum at x = 0. This is a critical point: f is not differentiable at 0.

Example 2. Consider the function $f(x) = x - \sqrt[3]{x}$. We have

$$f'(x) = 1 - \frac{1}{3\sqrt[3]{x^2}},$$

so f' is not defined at x = 0, and is zero at $x = \pm \frac{1}{\sqrt{27}}$. So, these three points are critical. Stationary points are $\pm \frac{1}{\sqrt{27}}$. *Exercise.* Prove that:

 $\sqrt{x} = -\frac{1}{\sqrt{27}}$ is a point of local maximum, and $x = \frac{1}{\sqrt{27}}$ is a point of local minimum; x = 0 is not a point of local extremum;

 $\checkmark \ \ f \text{ has no global extremum: } \lim_{x \to +\infty} f(x) = +\infty \text{ and } \lim_{x \to -\infty} f(x) = -\infty.$

1 Zeroes of the derivative

Example 3. Let us find all relative extrema of the function $f(x) = x^4 - x^3 + 1$ on [-1, 1]. This function is differentiable everywhere, so "suspicious" points are just the stationary points. To determine them, we compute the derivative:

$$f'(x) = 4x^3 - 3x^2.$$

Points c for which f'(c) = 0 are c = 0 and c = 3/4. How to proceed from here?

Let us note that f'(x) < 0 for x < 0 and 0 < x < 3/4, and f'(x) > 0 for x > 3/4. This means that f(x) is decreasing on [-1, 0] and [0, 3/4], and is increasing on [3/4, 1]. This in turn means that

 \checkmark at x = 3/4 a global minimum is attained;

 \checkmark at x = -1 and x = 1 relative maxima are attained;

 \checkmark at x = 0 we do not have a local extremum at all.

Since f(-1) = 3 > 1 = f(1), f has a global maximum at x = -1.

2 First derivative test

First derivative test for local extrema. Suppose that f is differentiable on (a, b) except possibly at c, which is a critical point.

- ✓ If f'(x) > 0 on (a, c) and f'(x) < 0 on (c, b), then f has a local maximum at c.
- ✓ If f'(x) < 0 on (a, c) and f'(x) > 0 on (c, b), then f has a local minimum at c.
- ✓ If f' has the same sign on (a, c) and on (c, b), then f does not have a local extremum at c.

In practice, one has to look for a sufficiently small interval (a, b) such that f' does not change sign on (a, c) or on (c, b).

2 First derivative test

Example. Let us analyse the critical points of the function $f(x) = x - \sqrt[3]{x}$ we considered earlier. Recall that $f'(x) = 1 - \frac{1}{3\sqrt[3]{x^2}}$, so

- ✓ for the stationary point $x = -\frac{1}{\sqrt{27}}$, we have f'(x) > 0 on $(a, -\frac{1}{\sqrt{27}})$ and f'(x) < 0 on $(-\frac{1}{\sqrt{27}}, b)$ for a and b sufficiently close to $-\frac{1}{\sqrt{27}}$;
- ✓ for the stationary point $x = \frac{1}{\sqrt{27}}$, we have f'(x) < 0 on $(a, \frac{1}{\sqrt{27}})$ and f'(x) > 0 on $(\frac{1}{\sqrt{27}}, b)$ for a and b sufficiently close to $\frac{1}{\sqrt{27}}$;

✓ for the critical point x = 0, we have f'(x) < 0 for x sufficiently close to 0.

We conclude that f has a relative maximum at $-\frac{1}{\sqrt{27}}$, a relative minimum at $\frac{1}{\sqrt{27}}$, and no relative extremum at 0.

3 Second derivative test

If a function is twice differentiable at a critical point, then a simpler test applies:

Second derivative test for local extrema. Suppose that f is twice differentiable at c, and f'(c) = 0.

- ✓ If f''(c) < 0, then f has a local maximum at c.
- ✓ If f''(c) > 0, then f has a local minimum at c.

If f''(c) = 0, then the test is inconclusive: f does not nessecarily have a local extremum at c. In this case, looking at further derivatives might be useful.

Example 1.

f(x)	f'(0)	f''(0)	local extremum at 0?
x ⁴	0	0	minimum
$-x^4$	0	0	maximum
x ³	0	0	nothing

This example shows that if f'(c) = f''(c) = 0, then "anything can happen".

3 Second derivative test

Example 2. Let us analyse the stationary points of the function $f(x) = \frac{x}{2} - \sin x$ on $[0, 2\pi]$. We have

$$f'(x) = \frac{1}{2} - \cos x, \qquad f''(x) = \sin x.$$

The points c in $[0, 2\pi]$ where f' vanishes are $\frac{\pi}{3}$ and $\frac{5\pi}{3}$. Substituting into f", we get

$$f''(\frac{\pi}{3}) = \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}, \quad f''(\frac{5\pi}{3}) = \sin(\frac{5\pi}{3}) = -\frac{\sqrt{3}}{2}.$$

Conclusion: f has a local maximum at $\frac{5\pi}{3}$, and a local minimum at $\frac{\pi}{3}$.

In practice, we are mostly interested in global, and not local extrema of f. How can one find them?

The answer depends on the domain of our function. The simplest domain is a closed interval.

Algorithm for finding global extrema of a function f on [a, b]:

- 1) Determine all critical points of f.
- 2) Exclude all stationary points which fail first or second derivative tests.
- 3) Evaluate f at the remaining critical points.
- 4) Evaluate f at the endpoints a and b.
- 5) Among the values obtained, choose the minimal and the maximal ones (the same value can be taken at several points).

For a continuous f, the algorithm always gives an answer:

Theorem 6 (Extreme Value Theorem). A continuous function attains a global minimum and a global maximum on any closed interval.

Example. We have seen that the function $f(x) = \frac{x}{2} - \sin x$ has two critical points on $[0, 2\pi]$:

- 1) $x = \frac{5\pi}{3}$ (a local maximum);
- 2) $x = \frac{\pi}{3}$ (a local minimum).

Let us evaluate f at these points:

1)
$$f(\frac{5\pi}{3}) = \frac{5\pi}{6} - \sin(\frac{5\pi}{3}) = \frac{5\pi}{6} + \frac{\sqrt{3}}{2};$$

2) $f(\frac{\pi}{3}) = \frac{\pi}{6} - \sin(\frac{\pi}{3}) = \frac{\pi}{6} - \frac{\sqrt{3}}{2}.$

We also need to evaluate f at the endpoints 0 and 2π : 3) $f(0) = \frac{0}{2} - \sin 0 = 0$; 4) $f(2\pi) = \pi - \sin(2\pi) = \pi$.

Since $\frac{5\pi}{6} + \frac{\sqrt{3}}{2} > \pi > 0 > \frac{\pi}{6} - \frac{\sqrt{3}}{2}$, we conclude that 1) $\frac{5\pi}{6} + \frac{\sqrt{3}}{2}$ is the maximum of f (attained at $x = \frac{5\pi}{3}$); 2) $\frac{\pi}{6} - \frac{\sqrt{3}}{2}$ is the minimum of f (attained at $x = \frac{\pi}{3}$).

If the domain is an open interval, things get more complicated, at least because the global extrema need not exist.

Example. The continuous function f(x) = x on (0, 1) or on \mathbb{R} has no extrema. Neither does $f(x) = \tan(x)$ on $(-\frac{\pi}{2}, \frac{\pi}{2})$.

Algorithm for finding global extrema of f on (a, b) (if they exist):

- 1) Determine all critical points of f.
- 2) Exclude all stationary points which fail first or second derivative tests.
- 3) Evaluate f at the remaining critical points.
- 4) Compute $\lim_{x\to a^+} f(x)$ and $\lim_{x\to b^-} f(x)$.
- 5) Among the values obtained, choose the minimal and the maximal ones. If the minimal/maximal value is one of the limits from 4), and is not attained in any interior point, then f has no global minimum/maximum.
- Exercise. Modify the algorithm for half-closed intervals.
- In general, the domain of a function f is a disjoint union of intervals. To find global extrema of such f, work separately on every interval from the domain, and then compare the minima/maxima obtained.

Example. Let us determine the local and global extrema of

$$f(x) = 2x^3 - 15x^2 + 36x$$

on the half-closed interval (1, 5]. We have

$$f'(x) = 6x^2 - 30x + 36 = 6(x^2 - 5x + 6) = 6(x - 2)(x - 3).$$

Therefore, there are no points of non-differentiability, and the stationary points are x = 2 and x = 3. Let us apply the 2nd derivative test to them: f'(x) = 12x - 30, f'(2) = 24 - 30 < 0, f'(3) = 36 - 30 > 0. So,

- $\checkmark x = 2$ is a point of local maximum;
- $\checkmark x = 3$ is a point of local minimum.

Finally, we should compare the values of f at the endpoints and at the critical points 2 and 3 that passed the 2nd derivative test.

$$\lim_{x \to 1^+} f(x) = f(1) = 2 - 15 + 36 = 23,$$

$$f(2) = 16 - 60 + 72 = 28,$$

$$f(3) = 54 - 135 + 108 = 27,$$

$$f(5) = 250 - 375 + 180 = 55.$$

Global extrema

Example (continued).

$$\lim_{x \to 1^+} f(x) = f(1) = 2 - 15 + 36 = 23,$$

f(2) = 16 - 60 + 72 = 28,
f(3) = 54 - 135 + 108 = 27,
f(5) = 250 - 375 + 180 = 55.

Since the minimum 23 of these four values is the limit at the endpoint 1 which is excluded from (1, 5], our function has no global minimum on (1, 5].

On the contrary, the maximum 55 is attained at the endpoint x = 5 which is included in (1, 5], so it is the point of global maximum.