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1 Derivative of quotients

Theorem 7. Suppose that the function g is di�erentiable at x = x0, and

that g(x0) 6= 0. Then 1
g
is di�erentiable at x = x0, and
(

1

g

) ′

(x0) = −
g ′(x0)

g(x0)2
.

Proof. We have
(

1

g

) ′

(x0) = lim
x→x0

1
g(x)

− 1
g(x0)

x− x0
= lim

x→x0

g(x0)−g(x)
g(x0)g(x)

x− x0

= −
1

g(x0)
lim

x→x0

1

g(x)
lim

x→x0

g(x) − g(x0)

x− x0
= −

g ′(x0)

g(x0)2
,

as required. We used that g is di�erentiable and thus continuous at x0.



1 Derivative of quotients

Theorem 8. Suppose that two functions f and g are both di�erentiable at

x = x0, and that g(x0) 6= 0. Then f
g
is di�erentiable at x = x0, and

(

f

g

) ′

(x0) =
f ′(x0)g(x0) − f(x0)g

′(x0)

g(x0)2
.

Proof. Let us apply Theorem 7 and the product rule to the product f · 1
g = f

g :
(

f

g

) ′

(x0) = f ′(x0)
1

g(x0)
+ f(x0)

(

1

g

) ′

(x0)

=
f ′(x0)

g(x0)
−

f(x0)g
′(x0)

g(x0)2
=

f ′(x0)g(x0) − f(x0)g
′(x0)

g(x0)2
,

as required.



1 Derivative of quotients

Example 1.

(

x3 − 2x

4x2 − 3

) ′

=
(x3 − 2x) ′(4x2 − 3) − (x3 − 2x)(4x2 − 3) ′

(4x2 − 3)2

=
(2x2 − 2)(4x2 − 3) − (x3 − 2x)8x

(4x2 − 3)2

=
(8x4 − 8x2 − 6x2 + 6) − (8x4 − 16x2)

(4x2 − 3)2

=
2x2 + 6

(4x2 − 3)2
= 2

x2 + 3

(4x2 − 3)2
.

Example 2.

(

x
√
x− 3x + 2√

x

) ′

=
(

x− 3
√
x+ 2√

x

) ′

= x ′ − 3(x
1
2 ) ′ + 2(x−

1
2 ) ′

= 1− 3
2
x−

1
2 − x−

3
2 .

B Try to simplify a function before computing its derivative!



2 Derivative of trigonometric functions

Theorem 9. We have sin ′(x) = cos(x), cos ′(x) = − sin(x).

Proof. We shall use the addition formulas for sines and cosines:

sin(a+b) = sina cosb+cosa sinb, cos(a+b) = cosa cosb−sina sinb,

and the remarkable limits lim
x→0

sinx
x = 1 and lim

x→0

1−cosx
x2 = 1

2 (see

supplementary materials for details).

Using these formulas, we can evaluate the respective limits:

lim
h→0

sin(x+ h) − sin x

h
= lim

h→0

sin x cosh+ cos x sinh− sinx

h

= cos x lim
h→0

sinh

h
− sinx lim

h→0

1− cosh

h2
lim
h→0

h

= cos x · 1− sin x · 1
2 · 0 = cos x.



2 Derivative of trigonometric functions

Theorem 9. We have sin ′(x) = cos(x), cos ′(x) = − sin(x).

Proof. We shall use the addition formulas for sines and cosines:

sin(a+b) = sina cosb+cosa sinb, cos(a+b) = cosa cosb−sina sinb,

and the remarkable limits lim
x→0

sinx
x = 1 and lim

x→0

1−cosx
x2 = 1

2 (see

supplementary materials for details).

Using these formulas, we can evaluate the respective limits:

lim
h→0

cos(x+ h) − cos x

h
= lim

h→0

cos x cosh− sin x sinh− cos x

h

= − sinx lim
h→0

sinh

h
− cos x lim

h→0

1− cosh

h2
lim
h→0

h

= − sinx · 1− cos x · 1
2 · 0 = − sin x.



2 Derivative of trigonometric functions

Theorem 10. We have

tan ′(x) =
1

cos(x)2
when x 6= π

2
+ πk, k ∈ Z;

cot ′(x) = −
1

sin(x)2
when x 6= πk, k ∈ Z.

Proof.

(tan x) ′ =

(

sinx

cos x

) ′

=
(sin x) ′ cos x− sin x(cos x) ′

(cos x)2

=
cos x cos x− sin x(− sinx)

(cos x)2
=

(cos x)2 + (sin x)2

(cos x)2
=

1

(cos x)2
.

Exercise. Prove the formula for cot ′ yourself; this would be an excellent way

to start ge�ing used to computing derivatives!



3 Derivative of compositions

Theorem 11 (Chain Rule). Suppose that the function g is di�erentiable at

x = x0, and the function f is di�erentiable at g(x0). Then f ◦ g is

di�erentiable at x0, and

(f ◦ g) ′(x0) = f ′(g(x0))g
′(x0).

“Proof.” We have

lim
x→x0

(f ◦ g)(x) − (f ◦ g)(x0)
x− x0

= lim
x→x0

f(g(x)) − f(g(x0))

x− x0
=

= lim
x→x0

[

f(g(x)) − f(g(x0))

g(x) − g(x0)

g(x) − g(x0)

x− x0

]

=

= lim
x→x0

f(g(x)) − f(g(x0))

g(x) − g(x0)
lim

x→x0

g(x) − g(x0)

x− x0
=

= lim
t=g(x)→g(x0)

f(t) − f(g(x0))

t− g(x0)
g ′(x0) = f ′(g(x0))g

′(x0).



3 Derivative of compositions

This proof has a gap. The problems lies in the statement

lim
x→x0

f(g(x)) − f(g(x0))

g(x) − g(x0)
= f ′(g(x0)).

For example, for the constant function g(x) = c, this becomes

lim
x→x0

0
0
= f ′(c), which does not make sense!

This problem occurs whenever g(x) is equal to g(x0) at infinitely many

points x that are as close to x0 as we want.

There are several ways to fix the “proof”. One of them uses the ε-δ

definition of limits; if you are comfortable with it, try to find a complete

proof of the theorem.

Otherwise you have to believe me that the theorem has rigorous proofs. As

for the incomplete one we saw above, it can help you memorise the chain

rule, and understand why it is natural!



3 Derivative of compositions

Example 1. If f(x) = cos(x3), then

f ′(x) = − sin(x3) · 3x2 = −3x2 sin(x3).

If f(x) = cos(x)3, then

f ′(x) = 3 cos(x)2 · (− sin(x)) = −3(1− sin(x)2) sin(x) = 3 sin(x)3 − 3 sin(x).

Example 2. If f(x) = tan(x)2, then

f ′(x) = 2 tan(x) · 1

cos2 x
=

2 sin x

cos3 x
.

Example 3. If f(x) =
√
x2 + 1, then

f ′(x) =
1

2
√
x2 + 1

· 2x =
x√

x2 + 1
.

Example 4. If g(x) = 1
f(x)

for some function f, then

g ′(x) = (f(x)−1) ′ = −
1

f(x)2
· f ′(x) = −

f ′(x)

f(x)2
.

We recover the formula obtained above using the definition of derivatives!



3 Derivative of compositions

With the notation dy
dx , the chain rule is the easiest to memorise: if

y = f(g(x)) and u = g(x), then

dy

dx
=

dy

du

du

dx
.

B Recall that du
dx is simply a notation for g ′. It is NOT the ration of du and

dx, so in the above formula you cannot cancel the two occurrences of du‼!

With the notation d
dx [f(x)], one writes the chain rule as

d

dx
[f(u)] = f ′(u)

du

dx
.

These forms are useful for integral calculus, namely for the variable change

formula.



4 Derivative of inverse functions

Theorem 12. Suppose that the function f is such that:

1. f is invertible;

2. f is continuous on some open interval containing x0;

3. f is di�erentiable at x = x0;

4. f ′(x0) 6= 0.

Then the inverse function f−1 is di�erentiable at y0 = f(x0), and

(f−1) ′(y0) =
1

f ′(x0)
.

In other words, (f−1) ′ =
1

f ′ ◦ f−1
.

This theorem, like all the previous ones, has one-sided versions.

Proof. We need to show two things:

A) f−1 is di�erentiable at y0;

B) (f−1) ′(y0) can be computed by the formula above.

Point A) is le� for you as an exercise.

Point B) will be proved in two ways.



4 Derivative of inverse functions

The first proof is graphical.

E�ect of the reflection about the line y = x:

before a�er

graph Γ of f graph Γ of f−1

point (x0, y0) on Γ point (y0, x0) on Γ

tangent y = mx+ c to Γ at (x0, y0) tangent x = my + c to Γ at (y0, x0)

slope m = f ′(x0) slope 1
m

= (f−1) ′(y0)

Here y0 = f(x0).

To understand the last row,

Xwrite the line equation x = my + c in the canonical form: y = 1
mx− c

m ;

X recall that the derivative of a function at a point is the slope of the

tangent line to its graph at the corresponding point.



4 Derivative of inverse functions

x

y

y = 1
mx− c

m

y = mx+ c

b

b

(x0, y0)

(y0, x0)



4 Derivative of inverse functions

The second proof is algebraic.

By the definition of the inverse function,

f(f−1(x)) = x

holds for all x from the range of f.

Di�erentiation at y0 yields

f ′(f−1(y0))(f
−1) ′(y0) = 1.

Recalling that f−1(y0) = x0, we get

(f−1) ′(y0) =
1

f ′(x0)
,

as desired.



4 Derivative of inverse functions

Example. Recall that the function f(x) = n
√
x is the inverse of the function

g(x) = xn. Here n ∈ N (the set of positive integers), and we work with

X all x for odd n;

X x > 0 for even n.

Then,

n
√
x
′
= f ′(x) =

1

g ′(f(x))
=

1

nf(x)n−1
=

1

n( n
√
x)n−1

=
1

n
x−

n−1
n =

1

n
x

1
n−1.

Suppose that n > 2. Then we need to exclude the values of x for which

g ′(f(x)). Since g ′(y) = nyn−1, this happens when f(x) = 0, that is, x = 0.

So, we have
(

x
1
n

) ′
= 1

nx
1
n−1

X for x 6= 0 and odd n;

X for x > 0 and even n.

We recovered the formula (xr) ′ = rxr−1 for r = 1
n , where n ∈ N.

Exercise. Prove that
(

x
m
n

) ′
= m

n x
m
n −1 for all x > 0, m ∈ Z (the set of

integers), n ∈ N. (Recall that x
m
n = n

√
xm = ( n

√
x)m).



4 Derivative of inverse functions

Example continued. We have established
(

n
√
x
) ′

= 1
n
x

1
n−1

X for x 6= 0 and odd n;

X for x > 0 and even n.

But what happens at x = 0 when n > 2?

Algebraically, at x = 0 we have
(

n
√
x
) ′

= 1
nx

1
n−1 =

1

nx1−
1
n

= 1
0 = ∞,

since 1− 1
n
> 0. So, the function x

1
n is not di�erentiable at 0.

Graphically, since (xn) ′ = nxn−1 = 0 at x = 0, the function g(x) = xn has

a horizontal tangent at 0, so its inverse g−1(x) = n
√
x has a vertical tangent

at g(0) = 0. So, the function n
√
x is not di�erentiable at 0.

Here for odd n we are talking about two-sided di�erentiability, and for even

n about one-sided di�erentiability.



4 Derivative of inverse functions

Here is how the tangent lines look like:

x

y

y =
√
x

y = x2

x = 0

y = 0



5 Derivative of inverse trig. functions

Theorem 13. We have

X arcsin ′(x) =
1√

1− x2
for all x ∈ (1,−1);

X arccos ′(x) = −
1√

1− x2
for all x ∈ (1,−1);

X arctan ′(x) =
1

1+ x2
for all x ∈ R;

X arccot ′(x) = −
1

1+ x2
for all x ∈ R.

These formulas will we particularly useful when computing integrals.

At x = ±1, the graphs of arcsin and arccos have vertical tangents, so these

functions have no one-sided derivatives at x = ±1.

The proof will be given on the blackboard.

Exercise. Compute (arcsin(
√
x)) ′ .



6 Summary: Di�erentiation rules

c ′ = 0, (xr) ′ = rxr−1, r ∈ R (f± g) ′ = f ′ ± g ′, (cf) ′ = cf ′

sin ′ = cos, cos ′ = − sin (fg) ′ = f ′g+ fg ′

tan ′ =
1

cos2
, cot ′ = −

1

sin2

(

1

f

) ′

= −
f ′

f2
,

(

f

g

) ′

=
f ′g− fg ′

g2

arcsin ′(x) =
1√

1− x2
= − arccos ′(x) (f ◦ g) ′(x) = f ′(g(x))g ′(x)

arctan ′(x) =
1

1+ x2
= − arccot ′(x) (f−1) ′ =

1

f ′ ◦ f−1

B While applying these rules, don’t forget to indicate for what values of

the variable you have the right to do it. That is, specify the domains!



7 Derivative of implicit functions

To compute (f−1) ′, we did not use any explicit formula for f−1. In fact such

a formula is rarely available. For instance, what is the inverse function for

f(x) = x5 + x?

What we used was the equation f(f−1(x)) = x relating f−1 and f.

This is a common situation in practice: we have an equation relating y and

x (e.g., a law from physics), using which we want to compute y ′(x). In this

case we talk about an implicit function and implicit di�erentiation. The

strategy is to di�erentiate both sides of the equation, like we did for f−1.

Example 1. To compute
(

1
x

) ′
in an alternative way, one can apply implicit

di�erentiation to xy = 1:
d

dx
[xy] =

d

dx
[1],

y+ xy ′ = 0,

y ′ = −
y

x
= −

1
x

x
= −

1

x2
.



7 Derivative of implicit functions

Example 2. Let us compute (
√
1− x2) ′ in two ways.

Method 1: Using the chain rule:
(

√

1− x2
) ′

=
1

2
√
1− x2

· (−2x) = −
x√

1− x2
.

Method 2: Applying implicit di�erentiation to x2 + y2 = 1:
d

dx
[x2 + y2] =

d

dx
[1],

2x + 2yy ′ = 0,

yy ′ = −x,

y ′ = −
x

y
= −

x√
1− x2

.



7 Derivative of implicit functions

Example 3. Let us consider the curve x3 + y3 = 3xy:

1

2

−1

−2

−3

−4

1 2−1−2−3−4
x

y

b

What is the equation of the tangent line at the point (2/3, 4/3)?

Note that this point is on the curve since

(2/3)3 + (4/3)3 = 8/27+ 64/27 = 72/27 = 8/3 = 3 · 2/3 · 4/3.



7 Derivative of implicit functions

This curve is not a graph of a function, but we still can use derivatives!

Di�erentiating implicitly amounts to the following steps:
d

dx
[x3 + y3] =

d

dx
[3xy],

3x2 + 3y2y ′(x) = 3y+ 3xy ′(x),

x2 + y2y ′(x) = y+ xy ′(x),

(y2 − x)y ′(x) = y− x2,

y ′(x) =
y − x2

y2 − x
.

Now to compute the slope of the tangent line at a point, we just substitute

the x- and y-coordinates. For (2/3, 4/3) we obtain

y ′(x) =
4/3− 4/9

16/9− 2/3
=

8/9

10/9
= 0.8,

and using the point-slope formula, we get y− 4/3 = 0.8(x − 2/3), that is,

y = 0.8x + 0.8.


