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1 Di�erentiability =⇒ continuity

We have seen two important properties of a function at a given point:

continuity and di�erentiability. Let us now see how they are related.

Theorem. A function f(x) di�erentiable at x = x0 is continuous at x = x0.

Proof. We are given that the limit

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)

h
exists. To show that f is continuous at x = x0, we need to show that

lim
x→x0

f(x) = f(x0), or using the new variable h = x− x0, that

lim
h→0

(f(x0 + h) − f(x0)) = 0.

Now we can use arithmetics of limits:

lim
h→0

(f(x0 + h) − f(x0)) = lim
h→0

[

f(x0 + h) − f(x0)

h
· h

]

=

= lim
h→0

f(x0 + h) − f(x0)

h
lim
h→0

h = f ′(x0) · 0 = 0.



2 Di�erentiability : continuity

The converse is not true: there exist continuous functions that are not

di�erentiable.

The simplest examples are the functions f(x) = |x| and f(x) = 3
√
x, which

are continuous everywhere but, as we saw, are not di�erentiable at x = 0.

For a long time it was believed that a continuous function would only have

a few corner points and points of vertical tangency, with “smooth” pieces

between them. Later mathematicians discovered continuous functions that

are not di�erentiable anywhere. A graph of such a function is impossible to

plot precisely, but they appear in real life applications, in the context of

fractals and Brownian motion of particles.



2 Di�erentiability : continuity

A famous example of everywhere continuous but nowhere di�erentiable

functions is the Weierstrass function:



3 One-sided di�erentiability

Di�erentiability, like continuity, has one-sided versions.

Definition. Given a function f, the functions f ′± defined by the formulas

f ′
−
(x) = lim

h→0−

f(x+ h) − f(x)

h
,

f ′
+
(x) = lim

h→0+

f(x+ h) − f(x)

h
are called the le�-hand and right-hand derivatives of f with respect to x.

Geometrically, f ′
−
(x) is the limit of slopes of secant lines as the point is

approached from the le�, and f ′
+
(x) is the limit of slopes of secant lines as

the point is approached from the right.

Definition. A function defined on a closed interval [a, b] is said to be

di�erentiable on [a, b] if

X it is di�erentiable on the open interval (a, b);

X the one-sided derivatives f ′
+
(a) and f ′

−
(b) exist.

Di�erentiability on rays and half-closed intervals is defined similarly.



4 Alternative notations for derivatives

In textbooks, reference manuals etc. you will encounter a variety of

notations for derivatives.

Di�erentiation as operation:

f ′(x) =
d

dx
[f(x)], f ′(x) = Dx[f(x)], f ′(x) = ∂x[f(x)].

Di�erentiation through the dependent variable: if there is a dependent

variable y = f(x), one may use the notation

f ′(x) = y ′(x), f ′(x) =
dy

dx
.

Here the fraction dy
dx should not really be viewed as the ratio of two

(undefined) quantities dy and dx, but rather as a symbol for the derivative.



4 Alternative notations for derivatives

An evaluation of the derivative at x = x0 in case of a complicated notation

is frequently denoted by
∣

∣

x=x0
:

f ′(x0) =
d

dx
[f(x)]

∣

∣

∣

∣

x=x0

,

f ′(x0) = Dx[f(x)]|x=x0
, f ′(x0) = ∂x[f(x)]|x=x0

,

f ′(x0) = y ′(x0), f ′(x0) =
dy

dx

∣

∣

∣

∣

x=x0

.



5 Brick and mortar approach

As usual, to compute the derivatives of basic functions, we will need to:

1) Derive the functions c, x, sin(x).

2) Determine how derivation behaves with respect to operations on

functions.

Theorem 1. For every c ∈ R, the constant function f(x) = c is

di�erentiable everywhere, and (c) ′ = 0.

Proof. By the definition of the derivative,

f ′(x0) = lim
x→x0

f(x) − f(x0)

x− x0
= lim

x→x0

c− c

x− x0
= lim

x→x0

0 = 0.



6 Derivative of power functions

Theorem 2. For every positive integer n, the function f(x) = xn is

di�erentiable everywhere, and (xn) ′ = nxn−1.

Proof. For n = 1, we have f(x) = x for all x, so

f ′(x0) = lim
x→x0

f(x) − f(x0)

x− x0
= lim

x→x0

x− x0

x− x0
= lim

x→x0

1 = 1 = 1x00.

Further, observe that similarly to a2 − b2 = (a − b)(a + b), we have

a3 − b3 = (a − b)(a2 + ab+ b2), . . .

an − bn = (a − b)(an−1 + an−2b+ · · · + abn−2 + bn−1),

so

lim
x→x0

xn − xn0
x− x0

= lim
x→x0

(xn−1 + xn−2x0 + · · ·+ xxn−2
0 + xn−1

0 ) = nxn−1
0 .

B This example shows that deriving a product is not as simple as that:

(x · x) ′ = (x2) ′ = 2x, while x ′ · x ′ = 1 · 1 = 1. So, (x · x) ′ 6= x ′ · x ′.



6 Derivative of power functions

Theorem 2. For every positive integer n, the function f(x) = xn is

di�erentiable everywhere, and (xn) ′ = nxn−1.

We will later prove a more general statement: (xr) ′ = rxr−1 for all real

exponents r and all x for which xr is defined.

Exercise. Prove the statement for r = 1
n and r = −n, where n is a positive

integer. Use the formula for an − bn above.

Examples.

For r = 1
2
, we get (x

1
2 ) ′ = 1

2
x−

1
2 for all x > 0. That is, (

√
x) ′ = 1

2
√
x
.

For r = −3, we get (x−3) ′ = −3x−4 for all x 6= 0. That is, ( 1
x3 )

′ = −3
x4 .



7 Derivative of scalar factors

Contrary to deriving a product, deriving a linear combination of functions is

straightforward.

Theorem 3. Suppose that the function f is di�erentiable at x = x0. Then

for any constant c the function cf is di�erentiable at x = x0, and

(cf) ′(x0) = cf ′(x0).

Proof. We have

(cf) ′(x0) = lim
x→x0

(cf)(x) − (cf)(x0)

x− x0
= lim

x→x0

cf(x) − cf(x0)

x− x0
=

= lim
x→x0

c
f(x) − f(x0)

x− x0
= c lim

x→x0

f(x) − f(x0)

x− x0
= cf ′(x0).



8 Derivative of sums

Theorem 4. Suppose that two functions f and g are both di�erentiable at

x = x0. Then f + g and f− g are di�erentiable at x = x0, and

(f+ g) ′(x0) = f ′(x0) + g ′(x0), (f − g) ′(x0) = f ′(x0) − g ′(x0).

Proof. We have

(f + g) ′(x0) = lim
x→x0

(f + g)(x) − (f+ g)(x0)

x− x0
=

= lim
x→x0

f(x) + g(x) − f(x0) − g(x0)

x− x0
=

= lim
x→x0

f(x) − f(x0) + g(x) − g(x0)

x− x0
=

= lim
x→x0

(

f(x) − f(x0)

x− x0
+

g(x) − g(x0)

x− x0

)

=

= lim
x→x0

f(x) − f(x0)

x− x0
+ lim

x→x0

g(x) − g(x0)

x− x0
= f ′(x0) + g ′(x0).

The same works for f − g.



9 Derivative of polynomial functions

From the above results, one concludes

Theorem 5. Every polynomial

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · + anx
n

is di�erentiable everywhere, and

f ′(x) = a1 + 2a2x+ 3a3x
2 + · · · + nanx

n−1.

Note that the degree of f ′ is one less the degree of f.

Examples.

(−x18 +
√
2x7 − 2

11x
2 − 33x + π) ′ = − 18x17 + 7

√
2x6 − 4

11x− 33.

((x3 − 1)(2x + 1)) ′ = (2x4 + x3 − 2x − 1) ′ = 8x3 + 3x2 − 2.



10 Derivative of products

Theorem 6 (Product Rule). Suppose that two functions f and g are both

di�erentiable at x = x0. Then fg is di�erentiable at x = x0, and

(fg) ′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0).

Informally, if f and g describe how two sides of a rectangle change with

time t, fg describes the change of the area:

g(t0)
g(t)

f(t0) f(t)

The added area consists of three parts:

X the two blue parts correspond to f ′(x0)g(x0) and f(x0)g
′(x0);

X the red part is relatively small and can be omi�ed.



10 Derivative of products

Theorem 6 (Product Rule). Suppose that two functions f and g are both

di�erentiable at x = x0. Then fg is di�erentiable at x = x0, and

(fg) ′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0).

Proof. We have

(fg) ′(x0) = lim
x→x0

(fg)(x) − (fg)(x0)

x− x0
= lim

x→x0

f(x)g(x) − f(x0)g(x0)

x− x0
=

= lim
x→x0

f(x)g(x) − f(x0)g(x) + f(x0)g(x) − f(x0)g(x0)

x− x0
=

= lim
x→x0

(

f(x) − f(x0)

x− x0
g(x) + f(x0)

g(x) − g(x0)

x− x0

)

=

= lim
x→x0

f(x) − f(x0)

x− x0
lim

x→x0

g(x) + f(x0) lim
x→x0

g(x) − g(x0)

x− x0
=

= f ′(x0)g(x0) + f(x0)g
′(x0),

where we used the fact that a function that is di�erentiable at x0 is also

continuous at x0.



10 Derivative of products

Example 1. Let f(x) = g(x) = x, so that f(x)g(x) = x2.

We have f ′(x) = g ′(x) = 1, so

(fg) ′(x) = f ′(x)g(x) + f(x)g ′(x) = 1 · x+ x · 1 = 2x,

as expected. In fact, one can use the product rule to get a proof of

(xn) ′ = nxn−1 by induction.

Example 2. ((x3 − 1)(2x + 1)) ′ = (x3 − 1) ′(2x + 1) + (x3 − 1)(2x + 1) ′

= 3x2(2x + 1) + (x3 − 1)2 = 6x3 + 3x2 + 2x3 − 2 = 8x3 + 3x2 − 2.

We recover the result obtained by first multiplying x3 − 1 by 2x+ 1.

Example 3. Let f(x) = (1+ x)
√
x. Then

d

dx
[f(x)] =

d

dx
[1+ x]

√
x+ (1+ x)

d

dx
[
√
x] =

= 1 ·
√
x+ (1+ x)

1

2
√
x
=

1+ 3x

2
√
x

.


