Lecture 13:
Derivatives: properties and computation

Victoria LEBED, lebed@maths.tcd.ie

MA1S11A: Calculus with Applications for Scientists

November 3, 2017


mailto:lebed@maths.tcd.ie

XX Differentiability = continuity

We have seen two important properties of a function at a given point:
continuity and differentiability. Let us now see how they are related.

Theorem. A function f(x) differentiable at x = x¢ is continuous at x = xg.
Proof. We are given that the limit
f(xo +h) — f(x0)

h
exists. To show that f is continuous at x = xg, we need to show that

lim f(x) = f(xp), or using the new variable h = x — xo, that
X—>X0
lim (f(xo +h) —f(xo)) =0.
h—0

Now we can use arithmetics of limits:

tim (0 + 1) — flxp)) = im | X021~ o)

f(xo +h) —f(xo)

f/(Xo) = lim
h—0

.hl =

= [im
h—0

I'mh——I' -0=0.
hl—>0 (XO)
O



<2 Differentiability < continuity

The converse is not true: there exist continuous functions that are not
differentiable.

The simplest examples are the functions f(x) = x| and f(x) = {/x, which
are continuous everywhere but, as we saw, are not differentiable at x = 0.

For a long time it was believed that a continuous function would only have
a few corner points and points of vertical tangency, with “smooth” pieces
between them. Later mathematicians discovered continuous functions that
are not differentiable anywhere. A graph of such a function is impossible to
plot precisely, but they appear in real life applications, in the context of
fractals and Brownian motion of particles.



<2/ Differentiability < continuity

A famous example of everywhere continuous but nowhere differentiable
functions is the Weierstrass function:
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—\/\\3/\One—sided differentiability

Differentiability, like continuity, has one-sided versions.

Definition. Given a function f, the functions f/, defined by the formulas
f(x +h) —f(x)

f/ = 1
= (X) h—>m8* h ’
o f(x+h)—1f(x)
i T
frbe) = lim, h

are called the left-hand and right-hand derivatives of f with respect to x.

Geometrically, f”_(x) is the limit of slopes of secant lines as the point is
approached from the left, and f/_(x) is the limit of slopes of secant lines as
the point is approached from the right.

Definition. A function defined on a closed interval [a, b] is said to be
differentiable on [q, b] if

v it is differentiable on the open interval (a, b);

v the one-sided derivatives f/_(a) and f’_(b) exist.

Differentiability on rays and half-closed intervals is defined similarly.



/\%\/\Alternative notations for derivatives

In textbooks, reference manuals etc. you will encounter a variety of
notations for derivatives.

Differentiation as operation:

f'(x) = %[f(X)], f'(x) = Dx[f(x)], f'(x) = ax[f(x)].

Differentiation through the dependent variable: if there is a dependent
variable y = f(x), one may use the notation
dy
f'(x) =y’ f(x) = ==.
)=y, )=
Here the fraction % should not really be viewed as the ratio of two
(undefined) quantities dy and dx, but rather as a symbol for the derivative.



/\%\/\Alternative notations for derivatives

An evaluation of the derivative at x = X in case of a complicated notation
is frequently denoted by ’

XXO




><5X Brick and mortar approach

As usual, to compute the derivatives of basic functions, we will need to:
1) Derive the functions c, x, sin(x).

2) Determine how derivation behaves with respect to operations on
functions.

Theorem 1. For every ¢ € R, the constant function f(x) = c is
differentiable everywhere, and (c)’ = 0.

Proof. By the definition of the derivative,
F(xg) = lim T =fxo) _ pe=e o)

X—Xo X — XO X—Xo X — XO X—X0



/\‘6\/\Derivative of power functions

Theorem 2. For every positive integer n, the function f(x) = x™ is
differentiable everywhere, and (x™)’ =nx™~'.

Proof. For n = 1, we have f(x) = x for all x, so

f(x) — f =
Fixg) = fim I ZFO) X=X g g g0,
X—X0 X — XO X—>Xo X — XO X—X0

Further, observe that similarly to a> — b? = (a — b)(a + b), we have

a® —b3 = (a—b)(a® + ab + b?),

an_bn:(a_b)(an—1 +an—zb+”_+abn—z+bn—1))
SO n n

lim ——0 — fim (x™ " 4+ x™"2xg+ - —l—xxg_z +x8_]) = nxg_].
X—=Xo X —Xpo X—>X0
(|

/\ This example shows that deriving a product is not as simple as that:
(x-x)" = (x2)" =2x, whilex’ - x’=1-1=1.S0, (x - x)" #x"-x".



K&/ Derivative of power functions

Theorem 2. For every positive integer n, the function f(x) = x™ is

differentiable everywhere, and (x™)’ =nx™"'.

We will later prove a more general statement: (x")’ = rx™~! for all real
exponents 1 and all x for which x" is defined.

Exercise. Prove the statement for r = % and r = —n, where n is a positive
integer. Use the formula for a™ — b™ above.

Examples.
Forr = %, we get (x%)’ = %x_% for all x > 0. That is, (\/X)’ = 9=

For = —3, we get (x 3)’ = —3x~% for all x # 0. That is, (%)/ = =3



/\W\/\Derivative of scalar factors

Contrary to deriving a product, deriving a linear combination of functions is
straightforward.

Theorem 3. Suppose that the function f is differentiable at x = x. Then
for any constant c the function cf is differentiable at x = x¢, and
(cf)’(x0) = cf’(xo0).

Proof. We have

(cf) (x0) = _lim = lim —— "9 —
X—X0 X — Xp X—Xo X —Xp
f —f f —f
~ im o f) — f(x0) im 109 — f(x0) — o’ (xo)
X—X0 X —Xpo X—X0 X —Xpo



/\‘8\/\ Derivative of sums

Theorem 4. Suppose that two functions f and g are both differentiable at
X = Xo. Then f 4+ g and f — g are differentiable at x = %, and

(f+9g) (x0) =f'(x0) +9'(x0), (f—g) (x0) =1"(x0)—g'(x0).

Proof. We have

(f+9g) (x0) = lim (f+9)(x) = (f+9g)(x0) _

X—X0 X — X0
i 004900 —fl(xo) — glxo) _
X—X0 X — X0
i fOX) = flxo) + 90) — glxo) _
X—X0 X —Xo
mEN (f(x)—f(xO)+g(x)—g(xO)> 1
X—=Xo X —Xp X —Xp
i SO0 fO0) 900 gk0) g
X—Xo X —Xp X—=X0 X — X0

The same works for f — g.

O



/\‘9\/\Derivative of polynomial functions

From the above results, one concludes

Theorem 5. Every polynomial

f(x) = ao + a1x + axx? + azx> + - + apx™
is differentiable everywhere, and

f'(x) = aj + 2axx + 3azx> + - - + napx™ .
Note that the degree of f’ is one less the degree of f.
Examples.

(—x]8+\/§X7—%X2—33X+T[)/: 1817 + 72 6—%x—33.

(B=12x+1)) =2x* +x3 —=2x— 1) =83 +3x? — 2.



>0/ Derivative of products

Theorem 6 (Product Rule). Suppose that two functions f and g are both
differentiable at x = xo. Then fq is differentiable at x = x¢, and

(fg)(x0) = f'(x0)g(x0) + f(x0)g’ (x0).

Informally, if f and g describe how two sides of a rectangle change with
time t, fg describes the change of the area:

g(t)
g(to)

f(to) f(t)

The added area consists of three parts:
v the two blue parts correspond to f’(xo)g(xo) and f(x0)g’(x0);
v the red part is relatively small and can be omitted.



>0/ Derivative of products

Theorem 6 (Product Rule). Suppose that two functions f and g are both
differentiable at x = xo. Then fg is differentiable at x = x¢, and

(fg)'(x0) = f'(x0)g(x0) + f(x0)g’ (x0).

Proof. We have

(fg)(x) — (fg)(xo) f(x)g(x) — f(x0)g(xo)

(fg)'(x0) = xli[‘lo = = xli['lo g -
IR f(x)g(x) — f(xo0)g(x) + f(x0)g(x) — f(x0)g(x0)
_X—>Xo X — X0 1

EEnE <f(X)*f(xo)g(x)+f(XO)g(x)9(X0)> L
X—X0 X — X0 X —Xo
— tim 2 O) g 4 £xg) tim QI 0L0)

X—X0 X — XO X—X0 X—X0 X— XO
= f'(x0)g(x0) + f(x0)g’(x0),
where we used the fact that a function that is differentiable at xq is also
continuous at xg. l



>0/ Derivative of products

Example 1. Let f(x) = g(x) = x, so that f(x)g(x) = x2.
We have f'(x) = ¢g’(x) =1, so

(fg)'(x) = f'(x)g(x) + f(x)g'(x) =1 - x+x -1 = 2x,
as expected. In fact, one can use the product rule to get a proof of
(x™)" = nx™~! by induction.

Example 2. (x> —1)(2x + 1)) = (x> = 1)/ (2x + 1)+ (x> = D) (2x + 1)’
=32 (2x+ N+ x3—1)2=6x3+3x> +2x3 -2 =83 +3x* - 2.
We recover the result obtained by first multiplying x> — 1 by 2x + 1.

Example 3. Let f(x) = (1 4+ x)4/x. Then

s = L1+ xR+ (1430
dx dx
1+3x

1




