Lecture 13: Derivatives: properties and computation

Victoria LEBED, lebed@maths.tcd.ie

MA1S11A: Calculus with Applications for Scientists

November 3, 2017

1 Differentiability \implies continuity

We have seen two important properties of a function at a given point: continuity and differentiability. Let us now see how they are related.

Theorem. A function f(x) differentiable at $x = x_0$ is continuous at $x = x_0$.

Proof. We are given that the limit

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists. To show that f is continuous at $x = x_0$, we need to show that $\lim_{x \to x_0} f(x) = f(x_0)$, or using the new variable $h = x - x_0$, that $\lim_{h \to 0} (f(x_0 + h) - f(x_0)) = 0.$

 $h \rightarrow 0$

Now we can use arithmetics of limits:

$$\lim_{h \to 0} (f(x_0 + h) - f(x_0)) = \lim_{h \to 0} \left[\frac{f(x_0 + h) - f(x_0)}{h} \cdot h \right] =$$
$$= \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \lim_{h \to 0} h = f'(x_0) \cdot 0 = 0.$$

2 Differentiability \neq continuity

The converse is not true: there exist continuous functions that are not differentiable.

The simplest examples are the functions f(x) = |x| and $f(x) = \sqrt[3]{x}$, which are continuous everywhere but, as we saw, are not differentiable at x = 0.

For a long time it was believed that a continuous function would only have a few corner points and points of vertical tangency, with "smooth" pieces between them. Later mathematicians discovered continuous functions that are not differentiable anywhere. A graph of such a function is impossible to plot precisely, but they appear in real life applications, in the context of *fractals* and *Brownian motion of particles*.

∑∑ Differentiability ∉ continuity

A famous example of everywhere continuous but nowhere differentiable functions is the *Weierstrass function*:

3 One-sided differentiability

Differentiability, like continuity, has one-sided versions.

Definition. Given a function f, the functions f'_{\pm} defined by the formulas

$$f'_{-}(x) = \lim_{h \to 0^{-}} \frac{f(x+h) - f(x)}{h},$$

$$f'_{+}(x) = \lim_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h}$$

are called the **left-hand** and **right-hand derivatives of** f with respect to x.

Geometrically, $f'_{-}(x)$ is the limit of slopes of secant lines as the point is approached from the left, and $f'_{+}(x)$ is the limit of slopes of secant lines as the point is approached from the right.

Definition. A function defined on a closed interval [a, b] is said to be **differentiable on** [a, b] if

- \checkmark it is differentiable on the open interval (a, b);
- \checkmark the one-sided derivatives $f'_+(a)$ and $f'_-(b)$ exist.

Differentiability on rays and half-closed intervals is defined similarly.

Alternative notations for derivatives

In textbooks, reference manuals etc. you will encounter a variety of notations for derivatives.

Differentiation as operation:

$$\mathsf{f}'(\mathsf{x}) = \frac{\mathsf{d}}{\mathsf{d}\mathsf{x}}[\mathsf{f}(\mathsf{x})], \quad \mathsf{f}'(\mathsf{x}) = \mathsf{D}_{\mathsf{x}}[\mathsf{f}(\mathsf{x})], \quad \mathsf{f}'(\mathsf{x}) = \mathfrak{d}_{\mathsf{x}}[\mathsf{f}(\mathsf{x})].$$

Differentiation through the dependent variable: if there is a dependent variable y = f(x), one may use the notation

$$f'(x) = y'(x), \quad f'(x) = \frac{dy}{dx}.$$

Here the fraction $\frac{dy}{dx}$ should not really be viewed as the ratio of two (undefined) quantities dy and dx, but rather as a symbol for the derivative.

Alternative notations for derivatives

An evaluation of the derivative at $x = x_0$ in case of a complicated notation is frequently denoted by $\Big|_{x=x_0}$:

$$f'(x_0) = \frac{d}{dx}[f(x)]\Big|_{x=x_0},$$

$$f'(x_0) = D_x[f(x)]|_{x=x_0}, \quad f'(x_0) = \partial_x[f(x)]|_{x=x_0},$$

$$f'(x_0) = y'(x_0), \quad f'(x_0) = \frac{dy}{dx}\Big|_{x=x_0}.$$

5 Brick and mortar approach

As usual, to compute the derivatives of basic functions, we will need to:

1) Derive the functions c, x, sin(x).

2) Determine how derivation behaves with respect to operations on functions.

Theorem 1. For every $c \in \mathbb{R}$, the constant function f(x) = c is differentiable everywhere, and (c)' = 0.

Proof. By the definition of the derivative,

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{c - c}{x - x_0} = \lim_{x \to x_0} 0 = 0.$$

6 Derivative of power functions

Theorem 2. For every positive integer n, the function $f(x) = x^n$ is differentiable everywhere, and $(x^n)' = nx^{n-1}$.

Proof. For
$$n = 1$$
, we have $f(x) = x$ for all x , so

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x - x_0}{x - x_0} = \lim_{x \to x_0} 1 = 1 = 1x_0^0.$$

Further, observe that similarly to $a^2 - b^2 = (a - b)(a + b)$, we have

$$a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2}),$$

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1}),$$

. . .

$$\lim_{x \to x_0} \frac{x^n - x_0^n}{x - x_0} = \lim_{x \to x_0} (x^{n-1} + x^{n-2}x_0 + \dots + xx_0^{n-2} + x_0^{n-1}) = nx_0^{n-1}$$

A This example shows that deriving a product is not as simple as that: $(x \cdot x)' = (x^2)' = 2x$, while $x' \cdot x' = 1 \cdot 1 = 1$. So, $(x \cdot x)' \neq x' \cdot x'$.

6 Derivative of power functions

Theorem 2. For every positive integer n, the function $f(x) = x^n$ is differentiable everywhere, and $(x^n)' = nx^{n-1}$.

We will later prove a more general statement: $(x^r)' = rx^{r-1}$ for all real exponents r and all x for which x^r is defined.

Exercise. Prove the statement for $r = \frac{1}{n}$ and r = -n, where n is a positive integer. Use the formula for $a^n - b^n$ above.

Examples.

For $r = \frac{1}{2}$, we get $(x^{\frac{1}{2}})' = \frac{1}{2}x^{-\frac{1}{2}}$ for all x > 0. That is, $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$.

For r = -3, we get $(x^{-3})' = -3x^{-4}$ for all $x \neq 0$. That is, $(\frac{1}{x^3})' = \frac{-3}{x^4}$.

Derivative of scalar factors

Contrary to deriving a product, deriving a linear combination of functions is straightforward.

Theorem 3. Suppose that the function f is differentiable at $x = x_0$. Then for any constant c the function cf is differentiable at $x = x_0$, and $(cf)'(x_0) = cf'(x_0)$.

Proof. We have $(cf)'(x_0) = \lim_{x \to x_0} \frac{(cf)(x) - (cf)(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{cf(x) - cf(x_0)}{x - x_0} =$ $= \lim_{x \to x_0} c \frac{f(x) - f(x_0)}{x - x_0} = c \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = cf'(x_0).$

8 Derivative of sums

Theorem 4. Suppose that two functions f and g are both differentiable at $x = x_0$. Then f + g and f - g are differentiable at $x = x_0$, and $(f + g)'(x_0) = f'(x_0) + g'(x_0)$, $(f - g)'(x_0) = f'(x_0) - g'(x_0)$.

Proof. We have $(f+g)'(x_0) = \lim_{x \to x_0} \frac{(f+g)(x) - (f+g)(x_0)}{x - x_0} =$ $= \lim_{x \to x_0} \frac{f(x) + g(x) - f(x_0) - g(x_0)}{x - x_0} =$ $= \lim_{x \to x_0} \frac{f(x) - f(x_0) + g(x) - g(x_0)}{x - x_0} =$ $= \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} + \frac{g(x) - g(x_0)}{x - x_0} \right) =$ $= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = f'(x_0) + g'(x_0).$ The same works for f - q.

>>> Derivative of polynomial functions

From the above results, one concludes

Theorem 5. Every polynomial

$$f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n$$

is differentiable everywhere, and

$$f'(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1}$$

Note that the degree of f' is one less the degree of f.

Examples.

$$(-x^{18} + \sqrt{2}x^7 - \frac{2}{11}x^2 - 33x + \pi)' = -18x^{17} + 7\sqrt{2}x^6 - \frac{4}{11}x - 33.$$
$$((x^3 - 1)(2x + 1))' = (2x^4 + x^3 - 2x - 1)' = 8x^3 + 3x^2 - 2.$$

10 Derivative of products

Theorem 6 (Product Rule). Suppose that two functions f and g are both differentiable at $x = x_0$. Then fg is differentiable at $x = x_0$, and $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$.

Informally, if f and g describe how two sides of a rectangle change with time t, fg describes the change of the area:

The added area consists of three parts:

- \checkmark the two blue parts correspond to $f'(x_0)g(x_0)$ and $f(x_0)g'(x_0)$;
- \checkmark the red part is relatively small and can be omitted.

10 Derivative of products

Theorem 6 (Product Rule). Suppose that two functions f and g are both differentiable at $x = x_0$. Then fg is differentiable at $x = x_0$, and $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$.

Proof. We have

 $(fg)'(x_0) = \lim_{x \to x_0} \frac{(fg)(x) - (fg)(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} =$ $= \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x) + f(x_0)g(x) - f(x_0)g(x_0)}{x - x_0} =$ $= \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} g(x) + f(x_0) \frac{g(x) - g(x_0)}{x - x_0} \right) =$ $= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \lim_{x \to x_0} g(x) + f(x_0) \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} =$ $= f'(x_0)q(x_0) + f(x_0)q'(x_0),$

where we used the fact that a function that is differentiable at x_0 is also continuous at x_0 .

10 Derivative of products

Example 1. Let f(x) = g(x) = x, so that $f(x)g(x) = x^2$. We have f'(x) = g'(x) = 1, so

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x) = 1 \cdot x + x \cdot 1 = 2x,$$

as expected. In fact, one can use the product rule to get a proof of $(x^n)' = nx^{n-1}$ by induction.

Example 2. $((x^3 - 1)(2x + 1))' = (x^3 - 1)'(2x + 1) + (x^3 - 1)(2x + 1)'$ = $3x^2(2x + 1) + (x^3 - 1)2 = 6x^3 + 3x^2 + 2x^3 - 2 = 8x^3 + 3x^2 - 2$. We recover the result obtained by first multiplying $x^3 - 1$ by 2x + 1.

Example 3. Let $f(x) = (1 + x)\sqrt{x}$. Then

$$\frac{d}{dx}[f(x)] = \frac{d}{dx}[1+x]\sqrt{x} + (1+x)\frac{d}{dx}[\sqrt{x}] =$$
$$= 1 \cdot \sqrt{x} + (1+x)\frac{1}{2\sqrt{x}} = \frac{1+3x}{2\sqrt{x}}.$$