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Recall the three main types of questions asked about functions:

1) When should I have sold my pounds? (extrema)

2) How did the exchange rate evolve? (derivative)

3) What is the average rate for the period? (integral)



1 Main questions of calculus

These questions can appear under various disguises:

1) How to determine the points where the values of a function are (“locally”)

maximal or minimal?
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1 Main questions of calculus

2) How to write the equation of a tangent line to a graph?
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1 Main questions of calculus

3) How to compute the area under a graph?
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1 Main questions of calculus

�estions of types 1) and 2) are dealt with by the di�erential calculus.

(Relates to the notion of derivative.)

�estions of type 3) are dealt with by the integral calculus.

(Relates to the notion of antiderivative.)

Calculus = di�erential calculus + integral calculus.

This is the “practical” part of analysis.

In fact, di�erential and integral calculi are strongly related by the

Newton–Leibniz formula, also called the fundamental theorem of calculus.

These are our topics for the remainder of this module.



2 Derivatives, antiderivative, and limits

The notion of limit is at the heart of both di�erential and integral calculi:

2) Look at the tangent line to y = x2 at the point (1, 1):
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2 Derivatives, antiderivative, and limits

2) Look at the tangent line to y = x2 at the point (1, 1). It is the limiting

position of the secant lines passing through the points (1, 1) and

(1+ h, (1+ h)2) as h gets smaller and smaller:

Here x ranges between 0 and 2.



2 Derivatives, antiderivative, and limits

2) Look at the tangent line to y = x2 at the point (1, 1). It is the limiting

position of the secant lines passing through the points (1, 1) and

(1+ h, (1+ h)2) as h gets smaller and smaller:

Here x ranges between 0.5 and 1.5.



2 Derivatives, antiderivative, and limits

2) Look at the tangent line to y = x2 at the point (1, 1). It is the limiting

position of the secant lines passing through the points (1, 1) and

(1+ h, (1+ h)2) as h gets smaller and smaller:

Here x ranges between 0.8 and 1.2.



2 Derivatives, antiderivative, and limits

The notion of limit is at the heart of both di�erential and integral calculi:

3) We encounter another instance of limiting behaviour when computing

areas:
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3 The notion of tangent line

We now turn to the di�erential calculus.

Informal definition. Given a function f, the tangent line to its graph at

x = x0 is the limit of lines passing through the points (x0, f(x0)) and

(x, f(x)) as x approaches x0.



3 The notion of tangent line

We now turn to the di�erential calculus.

Informal definition. Given a function f, the tangent line to its graph at

x = x0 is the limit of lines passing through the points (x0, f(x0)) and

(x, f(x)) as x approaches x0.

The tangent line is defined by two conditions:

1) it passes through the point (x0, f(x0));

2) its slope is the limit of the slopes of lines connecting (x0, f(x0)) to

(x, f(x)) as x tends to x0.

You can think about the tangent line as the best linear approximation of

f(x) for x close to x0.

Linear approximation means approximation by linear functions ax+ b.

Later we will consider approximations by polynomials of higher degrees.



3 The notion of tangent line

Formal definition. Given a function f, the tangent line at x = x0 is the

line defined by the equation

y− f(x0) = mtan(x− x0),

where

mtan = lim
x→x0

f(x) − f(x0)

x− x0
,

provided that this limit exists.

This definition coincides with the previous one:

1) the line above passes through the point (x0, f(x0)) since

f(x0) − f(x0) = 0 = mtan(x0 − x0);

2) its slopemtan is the limit of the slopes
f(x)−f(x0)

x−x0
of lines connecting

(x0, f(x0)) to (x, f(x)) as x tends to x0.

Alternatively, with the change of variables h = x− x0, which is thought as

approaching 0, the formula for mtan becomes

mtan = lim
h→0

f(x0 + h) − f(x0)

h
.



4 Tangent line and rate of change

Suppose that f(x) describes the position of a particle moving along the line

a�er x units of time elapsed.

expression interpretation
f(x)−f(x0)

x−x0
average velocity on [x0, x]

mtan = lim
x→x0

f(x)−f(x0)
x−x0

instantaneous velocity at x0

More generally, suppose that f(x) describes how a certain quantity f

changes depending on a parameter x (e.g. population growth with time,

measurements of a metal shape changing depending on temperature, cost

change depending on quantity of product manufactured).

expression interpretation
f(x)−f(x0)

x−x0
rate of change on [x0, x]

mtan = lim
x→x0

f(x)−f(x0)

x−x0
instantaneous rate of change at x0



5 The notion of derivative

It is important to realise that the limitmtan we discussed does clearly

depend on x0, so is actually a new function.



5 The notion of derivative

It is important to realise that the limitmtan we discussed does clearly

depend on x0, so is actually a new function. Let us state clearly its

definition (replacing x0 by x to emphasize the function viewpoint):

Definition. Given a function f, the function f ′ defined by the formula

f ′(x) = lim
h→0

f(x+ h) − f(x)

h
is called the derivative of f with respect to x. The domain of f ′ consists

of all x for which the limit exists.

Definition. A function f is said to be di�erentiable at x0 if the limit

f ′(x0) = lim
h→0

f(x0+h)−f(x0)

h
exists.

If f is di�erentiable at each point of the open interval or ray (a, b), we say

that f is di�erentiable on (a, b).

B Here we do not allow infinite limits!



6 Examples

Example 1. Let f(x) = x2. Then

f ′(x) = lim
h→0

(x+ h)2 − x2

h
= lim

h→0

2xh+ h2

h
= lim

h→0

(2x + h) = 2x.

In particular, f ′(0) = 0, f ′(0.5) = 1, f ′(1) = 2.



6 Examples

Example 2. Let f(x) = 2

x
. Then

f ′(x) = lim
h→0

2

x+h
− 2

x

h
= lim

h→0

2x−2(x+h)

x(x+h)

h
=

= lim
h→0

−2h

hx(x+ h)
= lim

h→0

−2

x(x+ h)
= −

2

x2
.

Example 3. Let f(x) =
√
x. Then

f ′(x) = lim
h→0

√
x+ h−

√
x

h
= lim

h→0

(x+ h) − x

h(
√
x+ h+

√
x)

=

= lim
h→0

h

h(
√
x+ h+

√
x)

= lim
h→0

1√
x+ h+

√
x
=

1

2
√
x
.



7 Algorithm for finding a tangent line

To write the equation of a tangent line to the graph of a function f at x = x0:

1) Evaluate f(x0); the point of tangency is (x0, f(x0)).

2) Evaluate f ′(x0) if you can; that is the slope of the tangent line.

3) Write the point–slope equation of the tangent line:

y = f ′(x0)(x − x0) + f(x0).

Example. For f(x) = x2, we have f ′(x0) = 2x0. So, the equation of the

tangent line at x0 is

y = 2x0(x − x0) + x20.

At x0 = 0 this yields y = 0.

At x0 = 1 this yields y = 2(x − 1) + 1, i.e., y = 2x− 1.



8 Points of non-di�erentiability

As with continuity, there are various reasons for a function not to be

di�erentiable at a point x0. Two particularly important situations are:

1) lim
h→0+

f(x+h)−f(x)

h
6= lim

h→0−

f(x+h)−f(x)

h
. That is, the growth rate limits

on the le� and on the right exist but di�er. So, there are distinct tangent

lines on the le� and on the right, forming a “corner point”, or a vertex.

Example. Consider the function f(x) = |x| at x = 0:

lim
x→0+

f(x) − f(0)

x
= lim

x→0+

x− 0

x
= lim

x→0+
1 = 1,

lim
x→0−

f(x) − f(0)

x
= lim

x→0−

−x− 0

x
= lim

x→0−
−1 = −1.
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8 Points of non-di�erentiability

2) lim
h→0

f(x+h)−f(x)

h
= ±∞. That is, the graph has a vertical tangent line

(such a line does not have a finite slope).

Example. Consider the function f(x) = 3
√
x at x = 0:

lim
x→0

f(x) − f(0)

x
= lim

x→0

3
√
x

x
= lim

x→0

1

( 3
√
x)2

= +∞.

x

B Geometrically, the function f(x) = 3
√
x has a tangent line at x = 0,

which is vertical. Its equation is x = 0. In calculus, only non-vertical

tangent line are allowed. Their equations are of the form y = ax + b.

In this case, f is declared not di�erentiable at 0.


