Lecture 11: Continuity

Victoria LEBED, lebed@maths.tcd.ie

MA1S11A: Calculus with Applications for Scientists

October 27, 2017

1/ The notion of continuity

We have seen that in particularly nice cases (e.g., for polynomials), limits can be computed by evaluation: $\lim_{x\to a} f(x) = f(a)$. To talk about such situations mathematically, we need the following notion.

Definition. A function f is called **continuous at the point** x = a if

- \checkmark f is defined on an open interval containing x = a;
- $\checkmark \lim_{x \to a} f(x)$ exists (as a finite number);
- $\checkmark \lim_{x \to a} f(x) = f(a).$

Example. Let us consider the functions

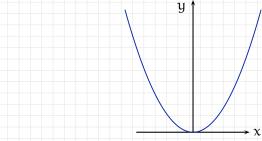
$$f(x) = \frac{x^2 - 4}{x - 2}, \quad g(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & x \neq 2, \\ 3, & x = 2, \end{cases} \quad h(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & x \neq 2, \\ 4, & x = 2. \end{cases}$$

These functions all coincide for $x \neq 2$, so they have the same limit at $x \to 2$: $\lim_{x\to 2} \frac{x^2-4}{x-2} = \lim_{x\to 2} (x+2) = 4$ The first function is undefined for x = 2, so it is not continuous, the second function is defined, but the values do not match, so it is not continuous either, and the third function is continuous.

1 The notion of continuity

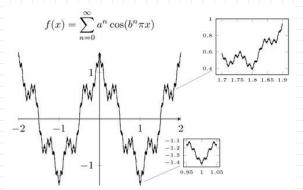
Definition. A function f is called **continuous on an open interval** (a, b) if it is continuous at each point of that interval.

Informally, this means that the graph of f on (a, b) is a single line, drawn without breaks:



1/ The notion of continuity

Note that continuous functions can be much more complicated than that:



This is the Weierstrass function. The more you zoom in, the more details of the graph you discern.

1 The notion of continuity

To define continuity on close intervals, we need to deal with continuity at the endpoints:

Definition. A function f is said to be **continuous from the left** (or **from the right**) at the point x = a if $\lim_{x \to a^-} f(x) = f(a)$ (or $\lim_{x \to a^+} f(x) = f(a)$). This means that the limit is defined, the value is defined, and they coincide.

Theorem. A function f is continuous at a iff it is continuous at a both from the left and from the right.

Definition. A function f is called continuous on a closed interval [a, b] if

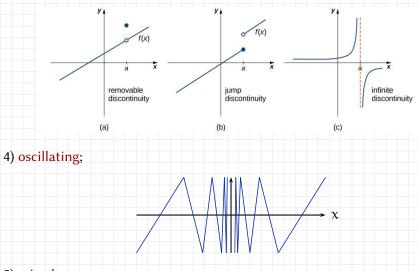
- \checkmark f is continuous on (a, b);
- \checkmark f is continuous from the right at a;
- \checkmark f is continuous from the left at b.

Continuity on half-closed intervals is defined similarly.

A function f is called **continuous** if its domain is a disjoint union of intervals, and it is continuous on each of these intervals.

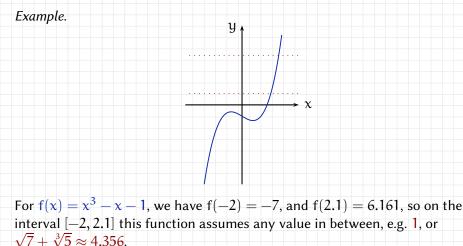
2 Discontinuity types

1) removable; 2) jump; 3) infinite;



5) mixed.

Intermediate Value Theorem. If a function f is continuous on the closed interval [a, b], then for every value k between f(a) and f(b) the equation f(x) = k has a solution on [a, b].



This theorem has several important consequences. One of them is the **bisection method** for numerically solving the equation f(x) = 0. Let us discuss how the method works.

Suppose that f is a continuous function on [a, b], with f(a) > 0 and f(b) < 0. We want to approximate a zero of f with precision δ . Compute $f(\frac{a+b}{2})$.

✓ If
$$f(\frac{a+b}{2}) = 0$$
, then $\frac{a+b}{2}$ is a zero of f.

 $\sqrt{-1}$ If $f(\frac{a+b}{2}) > 0$, then repeat the method on $[\frac{a+b}{2}, b]$.

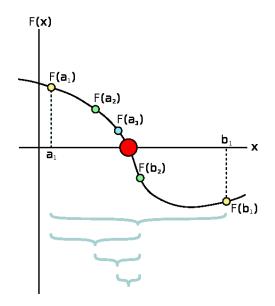
✓ If $f(\frac{a+b}{2}) < 0$, then repeat the method on $[a, \frac{a+b}{2}]$.

Stop when the length of the interval is $\leqslant 2\delta,$ and output its midpoint. At every iteration,

 ✓ the existence of a zero of f on the new interval is guaranteed by the Intermediate Value Theorem;

✓ the search interval decreases by half, so it eventually becomes $\leq 2\delta$. So, the output will be at a distance $\leq \delta$ from one of the zeroes of f. *Exercise.* Modify the method for functions with f(a) < 0, f(b) > 0.

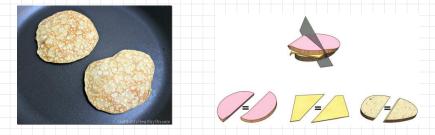
Bisection method for numerically solving the equation F(x) = 0:



Another application of the Intermediate Value Theorem is the following **Theorem**. Whichever shape on the plane (or in the 3d space) we take, there is a straight line (or plane) cutting it into two parts of equal areas (or volumes).

With some work, and still using the IVT, one can prove more:

Pancake theorem. Whichever two shapes on the plane we take, there is a straight line cutting each of them into two parts of the same area. **Ham sandwich theorem.** Whichever three shapes in the 3d space we take, there is a plane cutting each of them into two parts of the same volume.



One more application of the Intermediate Value Theorem is the existence of the number $\sqrt{2}$ (which you probably never questioned).

Indeed, the function $f(x) = x^2$ is continuous, and we have

$$f(1) = 1 < 2 < 4 = f(2).$$

Therefore, f(x) = 2 for some x between 1 and 2, which is denoted by $\sqrt{2}$.

Applying the bisection method to the function $g(x) = x^2 - 2$, one can approximate $\sqrt{2}$ as precisely as necessary.

Continuity on an interval: examples

Example. The function $f(x) = \frac{1}{x}$ is continuous on the closed interval [2, 3]. The same function is also continuous on the open interval (0, 1): for every c between 0 and 1 the value $\frac{1}{c}$ is defined, and $\lim_{x\to c} \frac{1}{x} = \frac{1}{c}$. However, $f(x) = \frac{1}{x}$ is not continuous on the closed interval [0, 1] since f(0) is not defined.

Example. The function $f(x) = \sqrt{9 - x^2}$ is continuous on the closed interval [-3, 3] (its natural domain), since we have

$$\lim_{\substack{x \to 3^{-} \\ x \to -3^{+}}} f(x) = \lim_{\substack{x \to 3^{-} \\ x \to -3^{+}}} \sqrt{9 - x^{2}} = 0 = f(3),$$

5 Proving continuity

We will now show that all basic functions are continuous. As usual, this will be done in two steps:

1) Proving that the functions c, x, sin(x) are continuous.

2) Showing that different operations on functions preserve continuity. Both steps mostly follow from what we already know about limits.

Theorem 1. The functions c, x, sin(x) are all continuous on \mathbb{R} .

Theorem 2. Suppose that the functions f and g are continuous at a. Then

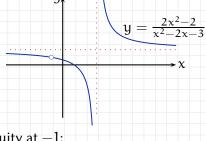
- \checkmark the functions f + g, f g, fg are all continuous at a;
- ✓ the function f/g is continuous at a if $g(a) \neq 0$, and not continuous (since undefined) at a if g(a) = 0;
- ✓ the function $\sqrt[n]{f(x)}$ is continuous at a (for even n, we require $f(x) \ge 0$ on some open interval containing a).

5 Proving continuity

Theorem. (Consequence of Theorems 1-2.)

- \checkmark A polynomial function is continuous.
- ✓ A rational function is continuous on its domain, i.e., at all points where the denominator is non-zero.

Example. The function $f(x) = \frac{2x^2-2}{x^2-2x-3}$ is continuous at all points where $x^2 - 2x - 3 = (x - 3)(x + 1) \neq 0$, that is when $x \neq -1$ and $x \neq 3$.



✓ removable discontinuity at −1;
✓ infinite discontinuity at 3.

5 Proving continuity

Theorem 3. Suppose that g is continuous at a, and f is continuous at g(a). Then $f \circ g$ is continuous at a.

Theorem 4. Suppose that f is a one-to-one function that is continuous on an interval or a ray. Then

- \checkmark f is monotonous;
- \checkmark the inverse f⁻¹ is continuous on its domain (i.e., on the range of f).

 \bigwedge For the continuity at one point, things are more complicated: f can be continuous at a, without f⁻¹ having a limit at f(a).

Theorems 2-4 also work for one-sided continuity.

Example. The polynomial function $f(x) = x^3$ is increasing and continuous on \mathbb{R} . So, $f^{-1}(x) = \sqrt[3]{x}$ is continuous on \mathbb{R} (which is the range of f). *Example.* The function $f(x) = x^3 + x$ is polynomial and therefore continuous everywhere. It is increasing as a sum of two increasing functions. So, f has a continuous inverse. In this case, it is not easy to describe f^{-1} by a formula, but the theorem still guarantees its continuity!