
ar
X

iv
:1

10
6.

56
00

v1
  [

m
at

h.
A

G
] 

 2
8 

Ju
n 

20
11

Every knot is a billiard knot

P. -V. Koseleff & D. Pecker

June 29, 2011

Abstract

We show that every knot can be realized as a billiard trajectory in a convex prism.
This solves a conjecture of Jones and Przytycki.
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1 Introduction

The study of billiard trajectories in a polyhedron was introduced in 1913 by König and Szücs
in [KS]. They proved density results for a billiard trajectory in a cube. Their theorem is
strongly related to the famous Kronecker density theorem (see [HW]).

More recently, Jones and Przytycki considered the periodic billiard trajectories with
no self-intersection as knots. They proved that billiard knots in a cube are isotopic to
Lissajous knots, and deduced that not all knots are billiard knots in a cube ([JP], see also
[La, C, BHJS, BDHZ]). They also proved that every torus knot (or link) of type (n, k),
where n ≥ 2k + 1 can be realized as a billiard knot in a cylinder (or in a prism with a
regular n-gonal floor). Przytycki went deeper into the study of symmetrical billiards in [P].

Lamm and Obermeyer [LO] proved that billiard knots in a cylinder are either periodic
or ribbon, hence not all knots are billiard knots in a cylinder. In [KP] we constructed many
other examples of billiard knots in convex polyhedrons (in fact irregular truncated cubes).
Dehornoy constructed in [D] a billiard which contains all knots, but this billiard is not
convex.

In this paper we prove the following conjecture of Jones and Przytycki:

Every knot is a billiard knot in some convex polyhedron.

Our result is more precise:
Theorem 8 Every knot (or link) is a billiard knot (or link) in some convex right prism.

Using a theorem of Manturov [M], we first prove that every knot has a diagram which is a
star polygon. Then, perturbing this polygon, we obtain an irregular diagram of the same
knot. We deduce that it is possible to suppose that 1 and the arc lengths of the crossing
points are linearly independent over Q. Then, it is possible to use the classical Kronecker
density theorem to prove our result.
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2 Every knot has a projection which is a star polygon

A toric braid is a braid corresponding to the closed braid obtained by projecting the
standardly embedded torus knot into the xy-plane. A toric braid is a braid of the form

τk,n =
(
σ1 σ2 · · · σk−1

)n

, where σ1, . . . , σk−1 are the standard generators of the full braid

group Bk. A quasitoric braid of type (k, n) is a braid obtained by changing some crossings in
the toric braid τk,n. The quasitoric braids form a subgroup of Bk. Consequently there exist
trivial quasitoric braids of arbitrarily great length, and any quasitoric braid is equivalent to
a quasitoric braid of type (k, n) with n ≥ 2k + 1.

Manturov’s theorem tells us that every knot (or link) is realized as the closure of a
quasitoric braid ([M]).

The following definition of polygonal stars will be useful for links.

Definition 1 Let p, q be integers. The polygonal star {p
q
} ⊂ R2 is given by its vertices

e(k) = e
2kiπ
p , and its sides (e(k), e(k + q)), k = 0, . . . , p− 1.

When p and q are coprime integers, this is the usual definition of star polygons. The
following picture shows the polygonal stars {10

3 }, {10
2 } and {9

3}, as projections of billiard
torus links T (10, 3), T (10, 2) and T (9, 3). The dotted lines correspond to the parts z < 0 of
the link.

Figure 1: The polygonal stars {10
3 }, {10

2 } and {9
3}, projections of the torus links T (10, 3),

T (10, 2) and T (9, 3).

Theorem 2 Every knot (or link) has a projection that is a polygonal star.

Proof. Let our knot be realized as the closure of a quasitoric braid of type (k, n). By our
remark, we can suppose n ≥ 2k + 1. Now, we use the result of Jones and Przytycki which
says that every torus knot of type (k, n), n ≥ 2k + 1 can be realized as a billiard knot in
a cylinder. In their construction, the projection on the xy-plane is the closure of the toric
braid τk,n, which proves our result. ✷
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Remark 3 It is also possible to use a theorem of Lamm and Obermeyer [LO] to give
another proof of theorem 1 in the knot case. A Rosette braid is a braid of the form(
σε1
1 · · · σεk−1

k−1

)n

, εi = ±1, and a Rosette knot is the closure of a Rosette braid. The theorem

of Lamm and Obermeyer tells us that every Rosette knot can be represented by a billiard
knot in a cylinder. The knot diagrams obtained in their proof are star polygons isotopic to
the closures of some quasitoric braids.

3 Breaking the symmetry

Since we want to obtain all knots, we need irregular diagrams.

First, let us recall some facts about billiard trajectories. If ABC is a piece of a polygonal
line, then the mirror placed at B, is the hyperplane µ(B) which is orthogonal to the internal
bisector of B̂ at B. The mirror room at B is the closed half-space containing A,B,C and
the mirror at B.

We define a billiard trajectory to be a finite union of polygonal lines, which is contained
in all its mirror rooms. A billiard knot (or link) is a polygonal knot (or link) ([A, C]) which
is a billiard trajectory.

The following result allows us to forget about the billiard, and focus our attention on
the trajectory. It is valid in every dimension.

Lemma 4 Let Q = (Q0, . . . , Qn−1), be a billiard trajectory such that Q⋂
µ(Qk) = Qk.

Then, if P = (P0, . . . , Pn−1) is sufficiently close to Q, it is a billiard trajectory in some
convex polyhedron.

Proof. Let −→uk(Q) be the unit vector of the internal bisector of Q̂k. The hypothesis means

that for every k, i, i 6= k, the scalar product −→uk(Q) .
−−−→
QkQi is positive.

Since −→uk(Q) and
−−−→
QkQi depend continuously on Q, this condition remains true for any

trajectory P that is sufficiently close to Q. ✷

Proposition 5 Let K be a knot. There exists a plane billiard trajectory P which is a
projection of a knot isotopic to K, and which satisfies the following irregularity condition:

If ti are the arc lengths corresponding to the crossings of P, then the numbers 1, ti are
linearly independent over Q.

Proof. Let Q = (Q0, . . . , Qn−1), Qn = Q0 be a star polygon which is a projection of K. Let
us suppose that each line (QkQk+1) has an equation of the form y = αkx + βk. Then, if
(ak, bk) are sufficiently close to (αk, βk), the lines {y = akx + bk} determine a nonconvex
polygon P = (P0, . . . , Pn−1) close to Q. By our lemma, P is a periodic billiard trajectory
in some convex polygon.

By Baire’s theorem, we can suppose that the numbers a0, a1, . . . , an−1 and b0, b1, . . . , bn−1

are algebraically independent over Q.
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P0

P1

P2

P3

P4

P0,2

P0,3

P1,3

P1,4

P2,4

Figure 2: Naming the vertices and crossings of a pentagonal trajectory.

Let I be the set of integer pairs (i, j), j 6= i− 1, such that the intersection of [Pi, Pi+1]
and [Pj , Pj+1] is a point Pi,j .

The vertex Pi is the point Pi−1,i. The abcissa of Pi,j is xi,j =
bi − bj
aj − ai

, and the length of

[Pi, Pi,j ] is |ℓi,j|, where ℓi,j =
√

1 + a2i

(
xi,j − xi−1,i

)
.

Let us show that the numbers ℓi,j and 1 are linearly independent over Q. Suppose that
we have a linear relation with rational coefficients

∑
(i,j)∈I λi,jℓi,j = λ, with λ, λi,j ∈ Q.

This is an algebraic relation between the ai and the bi. Since these numbers are alge-
braically independent over Q, this relation must be an identity.

Let k ≤ n− 1 be a fixed non-negative integer, and let us substitute bk = 1 and bi = 0 if
i 6= k in this identity.

We obtain a new identity between the ai.

n−1∑

j=0

λk,j

√
1 + a2k

( 1

aj − ak
− 1

ak−1 − ak

)
−

(n−1∑

j=0

λk+1,j

)
√

1 + a2
k+1

ak+1 − ak

+

n−1∑

i=0

λi,k

√
1 + a2i

ai − ak
= λ (1)

where λk,k = λk,k−1 = λk+1,k = 0. Substituting ak =
√
−1, in this identity, we obtain

−
(n−1∑

j=0

λk+1,j

)
√

1 + a2
k+1

ak+1 −
√
−1

+

n−1∑

i=0

λi,k

√
1 + a2i

ai −
√
−1

= λ.
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Let h 6= k + 1 be an integer, and let ah →
√
−1. From lim

z→
√
−1

√
1 + z2

z −
√
−1

= ∞, we obtain

λh,k = 0. Since this is true for every h and k, we deduce that λi,j = 0 for all (i, j) ∈ I.
Finally, since the arc lengths of the points Pi,j are given by ti,j = |ℓ0,1| + |ℓ1,2| + · · · +

|ℓi−1,i|+ |ℓi,j |, we deduce the result. ✷

Proposition 6 Let L be a link. There exists a plane billiard trajectory P which is a pro-
jection of a link isotopic to L, and which satisfies the following condition.

If R is a component of P parametrized by arc length, and if ti are the arc lengths
corresponding to the crossings, then the numbers 1, ti are linearly independent over Q.

Proof. The proof is almost identical to the preceding one.

There is a link isotopic to L whose plane projection is a union of polygons

P = P(1) ∪ P(2) ∪ · · · ∪ P(d)

whose vertices are (P0, P1, . . . , PN−1). Let R be a component of P, we can suppose that
the vertices of R are (P0, P1, . . . , Pn−1).

Furthermore, we can suppose that the equations y = akx+ bk of the sides of P are such
that the numbers ak and bk, k = 1, . . . , N − 1, are algebraically independent over Q.

Here, we consider the set I of integer pairs (i, j), i ∈ {0, . . . , n − 1}, j ∈ {0, . . . , N −
1}, j 6= i − 1, corresponding bijectively to the arc lengths of the vertices and crossings
contained in R.

Then, the rest of the proof is exactly the same as in the case of knots. ✷

4 Proof of the theorem

We will use Kronecker’s theorem ([HW, Theorem 443]):

Theorem 7 (Kronecker (1884)) If θ1, θ2, . . . , θk, 1 are linearly independent over Q, then

the set of points
(
(nθ1), . . . , (nθk)

)
is dense in the unit cube. Here (x) denotes the fractional

part of x.

Now, we can prove our main theorem.

Theorem 8 Every knot (or link) is a billiard knot (or link) in some convex prism.

Proof. First, we consider knots. By Theorem 2 there exists a knot isotopic to K whose
projection on the xy-plane is a periodic billiard trajectory in a convex polygon D. If ti are
the arc lengths corresponding to the crossings, we can suppose by Proposition 5 that the
numbers t1, . . . , tk, 1 are linearly independent over Q. Using a dilatation, we can suppose
that the total length of the trajectory is 1.
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Consider the polygonal curve defined by (x(t), y(t), z(t)), where z(t) is the sawtooth
function z(t) = 2|(nt+ ϕ) − 1/2| depending on the integer n and on the real number ϕ. If
the heights z(Pk) of the vertices are such that z(Pk) 6= 0, 1, then it is a periodic billiard
trajectory in the prism D × [0, 1] (see [JP, La, LO, P, KP]). If we set ϕ = 1/2 + z0/2,
z0 ∈]0, 1[, we have z(0) = z0. Now, using Kronecker’s theorem, there exists an integer n
such that the numbers z(ti) are arbitrarily close to any chosen collection of heights, which
implies the result.

The case of links is similar. First, we find a plane billiard diagram of our link, and then we
parameterize each component. ✷

Remark 9 If the diagram has some regularity, then it is generally impossible to use Kro-
necker’s theorem. This is illustrated by Lissajous knots and cylinder knots. This is also
true for more general diagrams.

For example, suppose that there are four crossings of arc lengths t1, t2, t3, t4 such that
t2−t1 = t4−t3. So, if z(t) = 2

∣∣(nt+ϕ)− 1
2

∣∣ is the height function, then εizi = 2(nti+ϕ)−1,
with εi = ±1. We deduce that ε1z1 − ε2z2 − ε3z3 + ε4z4 ∈ 2Z. Consequently, we see that
z1 = z2 = z3 = 1 implies z4 = 1. This clearly shows that the heights of the crossings cannot
be chosen arbitrarily.
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