Homework/Tutorial 7

A complete solution to questions 1 to 4 is worth 1 mark; for questions 5 to 7 it is 2 marks.

What this homework is about

You will compute derivatives and use them to analyse functions.

Reminder

Differentiation rules

$$c' = 0, \qquad (x^{r})' = rx^{r-1}, r \in \mathbb{R}$$

$$(f \pm g)' = f' \pm g', \qquad (cf)' = cf'$$

$$(fg)' = f'g + fg'$$

$$(fg)' = f'g + fg'$$

$$(fg)' = f'g - fg'$$

$$(f \circ g)'(x) = f'(g(x))g'(x), \qquad (f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

Applications of differential calculus

Different properties of a function can be established by looking at its derivative. Here are some examples:

- 1. f'(x) = 0 on $(a, b) \iff f(x) = c$ on (a, b) for some $c \in \mathbb{R}$.
- 2. f'(x) = g'(x) on $(a, b) \iff f(x) = g(x) + c$ on (a, b) for some $c \in \mathbb{R}$.
- 3. $f^{(n)}(x) = 0$ on $(a, b) \iff f(x)$ is polynomial of degree < n on (a, b).
- 4. f is differentiable and increasing (resp. decreasing) on $(a, b) \implies f'(x) \ge 0$ (resp. ≤ 0) on (a, b).
- 5. f'(x) > 0 (resp. < 0) on $(a, b) \implies f$ is increasing (resp. decreasing) on (a, b).
- 6. f is defined on (a, b) and has a local extremum at $c \implies c$ is critical.
- A point c from the domain of a function f is called
- critical if f is not differentiable at c or if f'(c) = 0;
- stationary if f'(c) = 0;
- a point of local minimum (resp. maximum) if $f(x) \ge f(c)$ (resp. $\le f(c)$) for all x sufficiently close to x;
- a point of global minimum (resp. maximum) if $f(x) \ge f(c)$ (resp. $\le f(c)$) for all x in the domain of f.

Extremum means minimum or maximum.

Questions

1. Compute the derivative of the following function: $\frac{x^2 - 1}{x^3 - x^2 + 2x - 2}$.

Solution. Let us first simplify the function:

$$\frac{x^2 - 1}{x^3 - x^2 + 2x - 2} = \frac{(x - 1)(x + 1)}{(x - 1)(x^2 + 2)} = \frac{x + 1}{x^2 + 2}$$

for $x \neq 1$. Now we can use the quotient rule for derivatives:
$$\left(\frac{x^2 - 1}{x^3 - x^2 + 2x - 2}\right)' = \left(\frac{x + 1}{x^2 + 2}\right)' = \frac{(x + 1)'(x^2 + 2) - (x + 1)(x^2 + 2)'}{(x^2 + 2)^2}$$
$$= \frac{1 \cdot (x^2 + 2) - (x + 1) \cdot 2x}{(x^2 + 2)^2} = \frac{x^2 + 2 - 2x^2 - 2x}{(x^2 + 2)^2}$$
$$= \frac{-x^2 - 2x + 2}{(x^2 + 2)^2}, \qquad x \neq 1.$$

2. Compute the second derivative of the following function: $\tan(\frac{x}{2})$.

Solution.

$$\tan(\frac{x}{2})'' = (\tan(\frac{x}{2})')' = \left(\frac{1}{(\cos(\frac{x}{2}))^2} \cdot \left(\frac{x}{2}\right)'\right)' = \frac{1}{2}\left((\cos(\frac{x}{2}))^{-2}\right)'$$
$$= \frac{1}{2} \cdot (-2)(\cos(\frac{x}{2}))^{-3} \cdot (\cos(\frac{x}{2}))' = -(\cos(\frac{x}{2}))^{-3} \cdot (-\sin(\frac{x}{2})) \cdot \left(\frac{x}{2}\right)'$$
$$= \frac{\sin(\frac{x}{2})}{2\cos(\frac{x}{2})^3}.$$

We see that our function is differentiable 2 times on its domain, i.e., for $x \neq (2k+1)\pi$ for integers k. Indeed, the only possible problem here is division by zero, which occurs when $\cos(\frac{x}{2}) = 0$, i.e., $\frac{x}{2} = \frac{\pi}{2} + k\pi$.

3. Assume that a function f satisfies $f''(x) = \cos(x)$. Show that f is of the form $f(x) = ax + b - \cos(x)$ for some real a and b.

Solution. We have $f''(x) = \cos(x) = (-\cos(x))''$, so $(f(x) + \cos(x))'' = 0$. By a theorem from lectures, this implies that $f(x) + \cos(x)$ is a polynomial of degree < 2, and thus has the form ax + b. So, $f(x) + \cos(x) = ax + b$, as desired.

- 4. Consider the function $f(x) = \begin{cases} x, & x \le 0; \\ \sin(x), & x > 0. \end{cases}$
 - (a) Compute its first and second derivatives.
 - (b) Determine all critical and stationary points of f''.

Solution.

- For x < 0, we have f'(x) = x' = 1, f''(x) = 1' = 0, f'''(x) = 0' = 0.
- For x > 0, we have $f'(x) = \sin(x)' = \cos(x)$, $f''(x) = \cos(x)' = -\sin(x)$, $f'''(x) = (-\sin(x))' = -\cos(x)$.
- The same formulas give one-sided derivatives at 0:
 - $f'_{-}(0) = 1, f'_{+}(0) = \cos(0) = 1$, so f'(0) = 1 (we used that $f(x) = \sin(x)$ even for $x \ge 0$, since $\sin(0) = 0$);

$$f''_{-}(0) = 0, f''_{+}(0) = -\sin(0) = 0, \text{ so } f''(0) = 0;$$

 $f_{-}^{\prime\prime\prime}(0) = 0, f_{+}^{\prime\prime\prime}(0) = -\cos(0) = -1$, so f is differentiable only twice at 0. From the above, we conclude:

- (a) $f'(x) = \begin{cases} 1, & x \le 0; \\ \cos(x), & x > 0; \end{cases}$ $f''(x) = \begin{cases} 0, & x \le 0; \\ -\sin(x), & x > 0. \end{cases}$ (b) The stationary points of f'' are those x for which (f'')'(x) = f'''(x) is zero. These
- (b) The stationary points of f'' are those x for which (f'')'(x) = f'''(x) is zero. These are all x < 0, and all x of the form $\frac{\pi}{2} + k\pi$ for non-negative integers k (this is where $-\cos(x)$ vanishes). Critical points include all the stationary points and x = 0, which is the only point at which f'''(x) does not exist.
- 5. Consider the function $g(x) = \arccos(\sin(x)^2)$.
 - (a) Compute g'. At what x is g not differentiable?
 - (b) For g', determine its one-sided limits and discontinuity type at $x = \frac{\pi}{2}$.

Solution.

(a)

$$g'(x) = -\frac{1}{\sqrt{1 - (\sin(x)^2)^2}} \cdot (\sin(x)^2)' = -\frac{1}{\sqrt{1 - \sin(x)^4}} \cdot 2\sin(x) \cdot (\sin(x))'$$
$$= \frac{-2\sin(x)\cos(x)}{\sqrt{1 - \sin(x)^4}}.$$

One can leave the answer as it is, or slightly simplify it:

$$\frac{-2\sin(x)\cos(x)}{\sqrt{1-\sin(x)^4}} = \frac{-2\sin(x)\cos(x)}{\sqrt{(1-\sin(x)^2)(1+\sin(x)^2)}} = \frac{-2\sin(x)\cos(x)}{\sqrt{\cos(x)^2}\sqrt{1+\sin(x)^2}}$$
$$= \frac{\cos(x)}{|\cos(x)|} \frac{-2\sin(x)}{\sqrt{1+\sin(x)^2}} = \begin{cases} \frac{-2\sin(x)}{\sqrt{1+\sin(x)^2}} & \text{when } \cos(x) > 0;\\ \frac{2\sin(x)}{\sqrt{1+\sin(x)^2}} & \text{when } \cos(x) < 0. \end{cases}$$

When splitting the square root into two, we used that $1 \pm \sin(x)^2 \ge 0$ for all x. Our function g is not differentiable when $\sqrt{1 - \sin(x)^4} = 0$, i.e., $\sin(x) = \pm 1$. This happens precisely when $x = \frac{\pi}{2} + k\pi$ for some integer k.

(b) Since $\cos(x) > 0$ for x slightly smaller than $\frac{\pi}{2}$ and $\cos(x) < 0$ for x slightly bigger than $\frac{\pi}{2}$, the above formulas yield

$$g'_{-}(\frac{\pi}{2}) = \lim_{x \to (\frac{\pi}{2})^{-}} \frac{-2\sin(x)}{\sqrt{1+\sin(x)^{2}}} = \frac{-2 \cdot 1}{\sqrt{1+1^{2}}} = -\sqrt{2};$$
$$g'_{+}(\frac{\pi}{2}) = \lim_{x \to (\frac{\pi}{2})^{+}} \frac{2\sin(x)}{\sqrt{1+\sin(x)^{2}}} = \frac{2 \cdot 1}{\sqrt{1+1^{2}}} = \sqrt{2}.$$

We used $\sin(\frac{\pi}{2}) = 1$.

Since $g'_{-}(\frac{\pi}{2})$ and $g'_{+}(\frac{\pi}{2})$ exist and are distinct, g' has a jump discontinuity at $x = \frac{\pi}{2}$. 6. Consider the function $h(x) = x^3 + 2x + 1$.

- (a) Compute h'. Use this to show that h has an inverse function.
- (b) Compute $(h^{-1})'(1)$.

Solution.

(a) $h'(x) = 3x^2 + 2$. Since h'(x) > 0 for all x, the function h is increasing on \mathbb{R} ,

hence one-to-one, hence invertible (using the results we saw in the chapter Inverse Functions).

(b) $(h^{-1})'(1) = \frac{1}{h'(h^{-1}(1))}$. We need to compute $h^{-1}(1)$, that is, the value of x for which $x^3 + 2x + 1 = 1$. Clearly, this value is x = 0. So, $(h^{-1})'(1) = 1 = 1$

$$(h^{-1})'(1) = \frac{1}{h'(0)} = \frac{1}{3 \cdot 0^2 + 2} = \frac{1}{2}.$$

- 7. Consider the curve described by the equation $x^2 + y^2 = xy x y + 6$.
 - (a) Check that the point (1, 2) lies on this curve.
 - (b) What is the equation of its tangent line at the point (1, 2)?

Solution.

- (a) $1^2 + 2^2 = 5 = 1 \cdot 2 1 2 + 6$.
- (b) Let us differentiate both sides of our equation:

$$(x^{2} + y^{2})' = (xy - x - y + 6)'$$
$$\iff 2x + 2yy' = y + xy' - 1 - y'$$
$$\iff y'(2y - x + 1) = y - 2x - 1$$
$$\implies y' = \frac{y - 2x - 1}{2y - x + 1}.$$

Putting x = 1 and y = 2 in the formula, we get the slope of the tangent line:

$$y' = \frac{2-2-1}{4-1+1} = -\frac{1}{4}$$

The point-slope formula then yields the equation of the desired tangent line:

$$y = -\frac{1}{4}(x-1) + 2,$$

or $y = -\frac{x}{4} + \frac{9}{4},$
or $y = -0.25x + 2.25.$