Homework/Tutorial 7

A complete solution to questions 1 to 4 is worth 1 mark; for questions 5 to 7 it is 2 marks.

What this homework is about
You will compute derivatives and use them to analyse functions.

Reminder

Differentiation rules

\[\begin{align*}
 c' &= 0, & (x^r)' &= r x^{r-1}, & r \in \mathbb{R} \\
 \sin' &= \cos, & \cos' &= -\sin, & \tan' &= \frac{1}{\cos^2}, & \cot' &= -\frac{1}{\sin^2} \\
 (\arcsin(x))' &= \frac{1}{\sqrt{1-x^2}}, \quad & (\arccos(x))' &= -\frac{1}{\sqrt{1-x^2}} \\
 (\arctan(x))' &= \frac{1}{1+x^2}, \quad & (\arccot(x))' &= -\frac{1}{1+x^2} \\
 (f \pm g)' &= f' \pm g', & (cf)' &= cf' \\
 (fg)' &= f'g + fg' \\
 (f^{-1})' &= \frac{1}{f' \circ f^{-1}} \\
\end{align*} \]

Applications of differential calculus
Different properties of a function can be established by looking at its derivative. Here are some examples:

1. \(f'(x) = 0 \) on \((a, b)\) \iff \(f(x) = c \) on \((a, b)\) for some \(c \in \mathbb{R} \).
2. \(f'(x) = g'(x) \) on \((a, b)\) \iff \(f(x) = g(x) + c \) on \((a, b)\) for some \(c \in \mathbb{R} \).
3. \(f^{(n)}(x) = 0 \) on \((a, b)\) \iff \(f(x) \) is polynomial of degree \(< n \) on \((a, b)\).
4. \(f \) is differentiable and increasing (resp. decreasing) on \((a, b)\) \implies \(f'(x) \geq 0 \) (resp. \(\leq 0 \)) on \((a, b)\).
5. \(f'(x) > 0 \) (resp. \(< 0 \)) on \((a, b)\) \implies \(f \) is increasing (resp. decreasing) on \((a, b)\).
6. \(f \) is defined on \((a, b)\) and has a local extremum at \(c \) \implies \(c \) is critical.

A point \(c \) from the domain of a function \(f \) is called

- **critical** if \(f \) is not differentiable at \(c \) or if \(f'(c) = 0 \);
- **stationary** if \(f'(c) = 0 \);
- a point of **local minimum** (resp. **maximum**) if \(f(x) \geq f(c) \) (resp. \(\leq f(c) \)) for all \(x \) sufficiently close to \(c \);
- a point of **global minimum** (resp. **maximum**) if \(f(x) \geq f(c) \) (resp. \(\leq f(c) \)) for all \(x \) in the domain of \(f \).

Extremum means minimum or maximum.
Questions

1. Compute the derivative of the following function: \(\frac{x^2-1}{x^3-x^2+2x-2} \).

\textbf{Solution.} Let us first simplify the function:
\[
\frac{x^2-1}{x^3-x^2+2x-2} = \frac{(x-1)(x+1)}{(x-1)(x^2+2)} = \frac{x+1}{x^2+2}
\]
for \(x \neq 1 \). Now we can use the quotient rule for derivatives:
\[
\left(\frac{x^2-1}{x^3-x^2+2x-2} \right)' = \left(\frac{x+1}{x^2+2} \right)' = \frac{(x+1)'(x^2+2) - (x+1)(x^2+2)'}{(x^2+2)^2}
\]
\[
= \frac{1 \cdot (x^2+2) - (x+1) \cdot 2x}{(x^2+2)^2} = \frac{x^2+2-2x^2-2x}{(x^2+2)^2} = \frac{-x^2-2x+2}{(x^2+2)^2}, \quad x \neq 1.
\]

2. Compute the second derivative of the following function: \(\tan\left(\frac{x}{2}\right) \).

\textbf{Solution.}
\[
\tan\left(\frac{x}{2}\right)'' = (\tan\left(\frac{x}{2}\right))' = \left(\frac{1}{(\cos\left(\frac{x}{2}\right))^2} \cdot \left(\frac{x}{2} \right)' \right)' = \frac{1}{2} \left((\cos\left(\frac{x}{2}\right))^{-3} \cdot (\cos\left(\frac{x}{2}\right))' - (\cos\left(\frac{x}{2}\right))^{-3} \cdot (-\sin\left(\frac{x}{2}\right)) \cdot \left(\frac{x}{2} \right)' \right)
\]
\[
= \frac{\sin\left(\frac{x}{2}\right)}{2\cos^3\left(\frac{x}{2}\right)}.
\]
We see that our function is differentiable 2 times on its domain, i.e., for \(x \neq (2k+1)\pi \) for integers \(k \). Indeed, the only possible problem here is division by zero, which occurs when \(\cos\left(\frac{x}{2}\right) = 0 \), i.e., \(\frac{x}{2} = \frac{x}{2} + k\pi \).

3. Assume that a function \(f \) satisfies \(f''(x) = \cos(x) \). Show that \(f \) is of the form \(f(x) = ax + b - \cos(x) \) for some real \(a \) and \(b \).

\textbf{Solution.} We have \(f''(x) = \cos(x) = (-\cos(x))'' \), so \((f(x) + \cos(x))'' = 0 \). By a theorem from lectures, this implies that \(f(x) + \cos(x) \) is a polynomial of degree \(< 2\), and thus has the form \(ax + b \). So, \(f(x) + \cos(x) = ax + b \), as desired.

4. Consider the function \(f(x) = \begin{cases} x, & x \leq 0; \\ \sin(x), & x > 0. \end{cases} \)

\textbf{(a)} Compute its first and second derivatives.
\textbf{(b)} Determine all critical and stationary points of \(f'' \).

\textbf{Solution.}

- For \(x < 0 \), we have \(f'(x) = x' = 1, f''(x) = 1' = 0, f'''(x) = 0' = 0 \).
- For \(x > 0 \), we have \(f'(x) = \sin(x)' = \cos(x), f''(x) = \cos(x)' = -\sin(x), f'''(x) = (-\sin(x))' = -\cos(x) \).
- The same formulas give one-sided derivatives at 0:
 \(f'_- (0) = 1, f'_+ (0) = \cos(0) = 1, \) so \(f'(0) = 1 \) (we used that \(f(x) = \sin(x) \) even for \(x \geq 0 \), since \(\sin(0) = 0 \));
 \(f''_- (0) = 0, f''_+ (0) = -\sin(0) = 0, \) so \(f''(0) = 0 \);
5. Consider the function
\[f''(0) = 0, \quad f'''(0) = -\cos(0) = -1, \] so \(f \) is differentiable only twice at 0.

From the above, we conclude:

(a) \(f'(x) = \begin{cases} 1, & x \leq 0; \\
\cos(x), & x > 0; \end{cases} \quad f''(x) = \begin{cases} 0, & x \leq 0; \\
-\sin(x), & x > 0. \end{cases} \)

(b) The stationary points of \(f'' \) are those \(x \) for which \((f'')'(x) = f'''(x) \) is zero. These are all \(x < 0 \), and all \(x \) of the form \(\frac{\pi}{2} + k\pi \) for non-negative integers \(k \) (this is where \(-\cos(x) \) vanishes). Critical points include all the stationary points and \(x = 0 \), which is the only point at which \(f'''(x) \) does not exist.

5. Consider the function \(g(x) = \arccos(\sin(x)^2) \).

(a) Compute \(g' \). At what \(x \) is \(g \) not differentiable?

(b) For \(g' \), determine its one-sided limits and discontinuity type at \(x = \frac{\pi}{2} \).

Solution.

(a) \[
g'(x) = -\frac{1}{\sqrt{1 - (\sin(x))^2}} \cdot (\sin(x))^2' = -\frac{1}{\sqrt{1 - \sin(x)^4}} \cdot 2\sin(x) \cdot (\sin(x))'
\]

One can leave the answer as it is, or slightly simplify it:

\[
\frac{-2\sin(x) \cos(x)}{\sqrt{1 - \sin(x)^4}} = \frac{-2\sin(x) \cos(x)}{\sqrt{(1 - \sin(x)^2)(1 + \sin(x)^2)}} = \frac{-2\sin(x) \cos(x)}{\sqrt{\cos(x)^2 \sqrt{1 + \sin(x)^2}}}
\]

\[
= \frac{\cos(x)}{\sqrt{1 + \sin(x)^2}} \frac{-2\sin(x)}{\sqrt{1 + \sin(x)^2}} = \begin{cases}
-2\sin(x) \\
\sqrt{1 + \sin(x)^2} \\
\sqrt{1 + \sin(x)^2}
\end{cases}
\]

when \(\cos(x) > 0 \); \(\frac{\cos(x)}{\sqrt{1 + \sin(x)^2}} \)

When splitting the square root into two, we used that \(1 \pm \sin(x)^2 \geq 0 \) for all \(x \).

Our function \(g \) is not differentiable when \(\sqrt{1 - \sin(x)^4} = 0 \), i.e., \(\sin(x) = \pm 1 \). This happens precisely when \(x = \frac{\pi}{2} + k\pi \) for some integer \(k \).

(b) Since \(\cos(x) > 0 \) for \(x \) slightly smaller than \(\frac{\pi}{2} \) and \(\cos(x) < 0 \) for \(x \) slightly bigger than \(\frac{\pi}{2} \), the above formulas yield

\[
g'_{-}(\frac{\pi}{2}) = \lim_{x \to (\frac{\pi}{2})^-} \frac{-2\sin(x)}{\sqrt{1 + \sin(x)^2}} = \frac{-2 \cdot 1}{\sqrt{1 + 1}} = -\sqrt{2};
\]

\[
g'_{+}(\frac{\pi}{2}) = \lim_{x \to (\frac{\pi}{2})^+} \frac{2\sin(x)}{\sqrt{1 + \sin(x)^2}} = \frac{2 \cdot 1}{\sqrt{1 + 1}} = \sqrt{2}.
\]

We used \(\sin(\frac{\pi}{2}) = 1 \).

Since \(g'_{-}(\frac{\pi}{2}) \) and \(g'_{+}(\frac{\pi}{2}) \) exist and are distinct, \(g' \) has a jump discontinuity at \(x = \frac{\pi}{2} \).

6. Consider the function \(h(x) = x^3 + 2x + 1 \).

(a) Compute \(h' \). Use this to show that \(h \) has an inverse function.

(b) Compute \((h^{-1})'(1) \).

Solution.

(a) \(h'(x) = 3x^2 + 2 \). Since \(h'(x) > 0 \) for all \(x \), the function \(h \) is increasing on \(\mathbb{R} \),
hence one-to-one, hence invertible (using the results we saw in the chapter Inverse Functions).

(b) \((h^{-1})'(1) = \frac{1}{h'(h^{-1}(1))}\). We need to compute \(h^{-1}(1)\), that is, the value of \(x\) for which \(x^3 + 2x + 1 = 1\). Clearly, this value is \(x = 0\). So,
\[
(h^{-1})'(1) = \frac{1}{h'(0)} = \frac{1}{3 \cdot 0^2 + 2} = \frac{1}{2}.
\]

7. Consider the curve described by the equation \(x^2 + y^2 = xy - x - y + 6\).

(a) Check that the point \((1, 2)\) lies on this curve.

(b) What is the equation of its tangent line at the point \((1, 2)\)?

Solution.

(a) \(1^2 + 2^2 = 5 = 1 \cdot 2 - 1 - 2 + 6\).

(b) Let us differentiate both sides of our equation:
\[
(x^2 + y^2)' = (xy - x - y + 6)'
\]
\[
\Longleftrightarrow 2x + 2yy' = y + xy' - 1 - y'
\]
\[
\Longleftrightarrow y'(2y - x + 1) = y - 2x - 1
\]
\[
\Longrightarrow y' = \frac{y - 2x - 1}{2y - x + 1}.
\]

Putting \(x = 1\) and \(y = 2\) in the formula, we get the slope of the tangent line:
\[
y' = \frac{2 - 2 - 1}{4 - 1 + 1} = -\frac{1}{4}.
\]

The point-slope formula then yields the equation of the desired tangent line:
\[
y = -\frac{1}{4}(x - 1) + 2,
\]
\[
or \quad y = -\frac{x}{4} + \frac{9}{4},
\]
\[
\text{or} \quad y = -0.25x + 2.25.
\]