
MA1S11A – TCD, Michaelmas term 2017, Week 8 Victoria Lebed

Homework/Tutorial 6

A complete solution to questions 1 and 2 is worth 3 marks; for question 3 it is 1.4 marks; for

the remaining questions it is 1.3 marks.

What this homework is about

You will learn how to apply the Intermediate Value Theorem, and how to check the conti-
nuity and compute the derivatives of the simplest functions.

Reminder

Intermediate Value Theorem (IVT). If a function f is continuous on the closed interval
[a, b], then it takes every real value between f(a) and f(b).

If a composition f ◦ g of two continuous functions f and g is defined on an interval (a, b),
that it is itself continuous on (a, b).

If f is one-to-one and continuous on an interval or a ray, then its inverse f−1 is continuous
on its domain.

Given a function f , the function f ′ defined by the formula

f ′(x) = lim
h→0

f(x + h) − f(x)

h
is called the derivative of f with respect to x. The domain of f ′ consists of all x for which
the limit exists. The function f is said to be differentiable at x0 if the limit above exists
for x = x0. When only the one-sided version lim

h→0±
of the above limit is defined, we talk about

left-hand and right-hand derivatives f ′
±(x).

The equation of the tangent line to the graph of a function f at the point x0 (where f is
differentiable) can be written as

y = f ′(x0)(x − x0) + f(x0).

A function f(x) differentiable at x = x0 is continuous at x = x0, but the converse does not
always hold.

A summary of differentiation rules:

(c)′ = 0, (f ± g)′ = f ′ ± g′,

(xr)′ = rxr−1, (fg)′ = f ′g + fg′.

Here c and r are any real numbers, and f and g are functions differentiable at the points of
interest.

Questions

1. Consider the function f(x) = arcsin(|2x + 1| − 2).
(a) What is its natural domain?
(b) Explain why f is continuous on its natural domain.
(c) Show that the graph of f intersects the line y = −x

2
at least twice. (Hint. Use the

Intermediate Value Theorem.)

Solution.
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(a) The function h(x) = |2x + 1| − 2 is defined everywhere, and the function arcsin is
defined on [−1, 1]. So, we need to determine all x for which −1 ≤ |2x + 1| − 2 ≤ 1,
that is 1 ≤ |2x + 1| ≤ 3.

• When 2x + 1 ≥ 0, this means 1 ≤ 2x + 1 ≤ 3, that is 0 ≤ x ≤ 1.
• When 2x + 1 < 0, this means 1 ≤ −2x − 1 ≤ 3, that is −2 ≤ x ≤ −1.

Summarising, the natural domain is [−2, −1] ⊔ [0, 1].
(b) • The function g2(x) = |x| is continuous everywhere (it is continuous on (0, +∞)

and (−∞, 0) since it coincides with the functions x ans −x on these rays; and
it is continuous at 0 since lim

x→0+
x = lim

x→0−
(−x) = 0.

• The functions g1(x) = 2x + 1 and g3(x) = x − 2 are polynomial and hence
continuous everywhere.

• The function arcsin is continuous on [−1, 1] as the inverse of the continuous
function sin (restricted to [−π

2
, π

2
]).

So, the iterated composition f = arcsin ◦g3 ◦ g2 ◦ g1 is continuous on its domain.
(c) The x-coordinates of the intersection points of the curve y = arcsin(|2x + 1| − 2)

and the line y = −x

2
are the solutions of equation arcsin(|2x + 1| − 2) = −x

2
, that is,

u(x) = 0, where u(x) = arcsin(|2x+1|−2)+ x

2
. We saw above that the function f , and

hence u, is continuous on [−2, −1]. Also, we have u(−2) = arcsin(1)−1 = π

2
−1 > 0,

and u(−1) = arcsin(−1) − 1
2

= −π

2
− 1

2
< 0. According to the Intermediate Value

Theorem, this means that u takes the value 0 somewhere between −2 and −1. One
similarly shows that it takes the value 0 between 0 and 1. This gives two distinct
solutions of u(x) = 0, hence two intersection points.

2. Consider the functions

f(x) = cos(
1

x
), g(x) = x 3

√
x cos(

1

x
).

(a) What are their natural domains?
(b) Compute the value of f at x = 1

kπ
for non-zero integer values of k. (The answer

might depend on k.)
(c) Does f have a limit at 0?
(d) What is the discontinuity type of f at the point 0?
(e) Is the function g even? odd?
(f) What is the discontinuity type of g at the point 0?
(g) Explain (briefly) why f and g are continuous on their natural domains.

(h) Consider the function h(x) =







g(x), x 6= 0,

0, x = 0.
Show that it is differentiable at 0.

Solution.

(a) The only problematic expression for both functions is 1
x
, defined for x 6= 0 only. So,

the natural domain for both functions is (−∞, 0) ∪ (0, +∞).

(b) f( 1
kπ

) = cos(kπ) =







1, x even and x 6= 0,

−1, x odd.
.

(c) The points x = 1
kπ

get as close as we wish to 0 both for even and for odd k. According
to the previous question, lim

x→0
f(x) then has to be 1 and −1 simultaneously, which is

impossible. So f does not have a limit at 0.
(d) Oscillating discontinuity.
(e) The natural domain of g is (−∞, 0) ∪ (0, +∞), which is symmetric with respect to
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0. Further, g(−x) = (−x) 3
√

−x cos( 1
−x

) = −x(− 3
√

x) cos( 1
x
) = x 3

√
x cos( 1

x
) = g(x)

(we used that cos is an even function). Conclusion: the function g is even.
(f) Removable discontinuity. Indeed, the factor cos( 1

x
) is bounded (since | cos(t)| ≤ 1

for all t), and x 3
√

x →
x→0

0. If something which gets as small as you wish when x

approaches 0 is multiplied by something bounded, the result is still as small as you
wish. So, g has a finite limit at 0: lim

x→0
g(x) = 0.

Remark. If you have read the supplementary materials, you can compute lim
x→0

g(x)

more rigorously using the following result:
Squeeze Theorem. If the functions f , g, and h are such that

i. g(x) ≤ f(x) ≤ h(x) for all x in an interval containing c (possibly excluding c),
ii. lim

x→c
g(x) = lim

x→c
h(x) = L,

then lim
x→c

f(x) = L as well.

(g) They are both compositions and products of continuous functions.

(h) lim
x→0

h(x) − h(0)

x − 0
= lim

x→0

g(x)

x
= lim

x→0

3
√

x cos( 1
x
) = 0 We used the identity h(x) = g(x)

for x 6= 0, and, in the last step, the same boundedness argument as in (f).

3. Recall that the floor ⌊x⌋ of a real number x is defined as the greatest integer that is less
than or equal to x. Compute the left-hand and the right-hand derivatives of the function
f(x) = ⌊x⌋. Plot the graph of f ′ and determine the type of its discontinuity points.

Solution. For all integers k, one has ⌊x⌋ = k for x ∈ [k, k + 1), so our function is constant
on each half-closed interval [k, k + 1). So,

• f ′(x) = 0 for all x inside such intervals, that is, for all non-integer x;
• f ′

+(k) = 0 for all integers k.

Finally, f ′
−(k) = lim

x→k−

⌊x⌋ − ⌊k⌋
x − k

= lim
x→k−

(k − 1) − k

x − k
= lim

x→k−

−1

x − k
= +∞. We used that

⌊x⌋ = k − 1 for x sufficiently close to k and smaller than k. So, f has neither left-hand
nor two-sided derivative at x = k. The graph of f ′ looks as follows:

x

y

1 2 3−1
bc bc bc bc

We see that f ′ has a removable continuity at each integer point x = k.

4. Find the equation of the tangent line to the graph of the function

f(x) = (x2 + 1 +
1

(x − 2)3
)(x3 −

√
x)

at the point x = 1.

Solution. We need to compute two things:
(a) f(1) = (1 + 1 − 1)(1 − 1) = 0;

(b) f ′(1) =
(

(x2 + 1 + 1
(x−2)3 )(x3 − √

x)
)′ |x=1

=
(

(x2 + 1 + 1
(x−2)3 )′(x3 − √

x) + (x2 + 1 + 1
(x−2)3 )(x3 − √

x)′
)

|x=1

=
(

(x2 + 1 + 1
(x−2)3 )′(x3 − √

x) + (x2 + 1 + 1
(x−2)3 )(3x2 − 1

2
√

x
)
)

|x=1
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= (x2 + 1 + 1
(x−2)3 )′|x=1(1 − 1) + (1 + 1 − 1)(3 − 1

2
)

= 0 + 5
2

= 5
2
.

Now, the equation of the tangent line is y = f ′(1)(x − 1) + f(1) = 5
2
(x − 1) + 0, that is,

y = 5
2
(x − 1).

5. Compute the area of the triangle formed by the x-axis, the y-axis, and the tangent line
to the hyperbola y = 1

x
at the point x = a, where a is a positive real number. The answer

might depend on a.

Solution. We need the equation of the tangent line to the graph of f(x) = 1
x

at x = a:

y = f ′(a)(x − a) + f(a) = − 1

a2
(x − a) +

1

a
= − x

a2
+

1

a
+

1

a
,

that is, y = − x

a2 + 2
a
. It intersects

• the y-axis at the point (0, 2
a
) (since f(0) = 2

a
);

• the x-axis at the point (2a, 0) (to determine this, we solved the equation − x

a2 + 2
a

= 0).
The triangle we are interested in is right-angled, with the legs 2

a
and 2a. Its area is

1
2

· 2
a

· 2a = 2, and does not depend on a.

x

y

y = 1
x

y = − x

a2 + 2
a

2
a

2a
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