
TCD – Hilary term 2017 MA3416: Group Representations

Homework 3: Representations of Sn and An.

Instructions. Try to give concise but precise answers. When answering a question, you may
use the previous questions of the same exercise, even if you have not solved those.

Exercise 1. Our aim is to recover the irrep Vn−2,1,1 of the symmetric group Sn as the alternating
square Λ2(V st), and the irrep Vn−2,2 as a direct summand of the symmetric square S2(V st).
First, take positive integers p ≥ q ≥ 1. Consider the two-part partition (p, q) of p+ q.

1. Prove that the following Sp+q-representations are isomorphic:
CMp,q

∼= Vp,q ⊕ CMp+1,q−1,

using the Frobenius formula for the character of Vλ and its analogue for CMλ.

Solution. By the Frobenius formula, χVp,q(σ) is the coefficient of the monomial xp+1
1 xq2 in

the polynomial (x1 − x2)Pλ′(x1, x2), where
Pλ′(x1, x2) = (xλ

′
1

1 + x
λ′1
2 ) · · · (xλ

′
k′

1 + x
λ′

k′
2 ),

and the permutation σ is of cycle type λ′ = (λ′1, . . . , λ′k′). Writing (x1 − x2)Pλ′(x1, x2) as
x1Pλ′(x1, x2)−x2Pλ′(x1, x2), one sees that the coefficient of xp+1

1 xq2 in (x1−x2)Pλ′(x1, x2)
is the coefficient of xp1xq2 in Pλ′(x1, x2), minus the coefficient of xp+1

1 xq−1
2 in Pλ′(x1, x2).

Recalling the formula for the character of CMλ, one concludes
χVp,q(σ) = χCMp,q(σ)− χCMp+1,q−1(σ).

The representations CMp,q and Vp,q⊕CMp+1,q−1 have the same character, and are therefore
isomorphic.

2. Deduce from this the degree of Vp,q. Compare with the result predicted by the Hook
length formula.

Solution. The set of Young tabloids Mλ is the set of Young tableaux of shape λ ` n,
considered up to row permutation. Such a tabloid is uniquely determined by which λ1
numbers from {1, 2, . . . , n} are in the first row, with λ2 numbers are in the second row,
etc. The cardinal of Mλ is thus(

n

λ1, λ2, . . .

)
= n!
λ1!λ2! · · · .

Therefore,
dimC(Vp,q) = dimC(CMp,q)− dimC(CMp+1,q−1) = #Mp,q −#Mp+1,q−1

= (p+ q)!
p!q! − (p+ q)!

(p+ 1)!(q − 1)! = (p+ q)!
(p+ 1)!q! (p+ 1− q).

Further, the hook length of all the cells in Dp,q is computed as follows:

p+1 p . . . p−q+2 p−q p−q−1 . . . 1

q q−1 . . . 1
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The Hook length formula then yields

dimC(Vp,q) = (p+ q)!
(p+ 1) · · · (p− q + 2)(p− q)!q! = (p+ q)!

(p+ 1)!q! (p− q + 1).

The two methods give the same answer.
3. Decompose the Sp+q-representation CMp,q into irreducibles.

Solution. Iterating the formula from Q1, and using Vp+q,0 = Vp+q ∼= V tr, one gets
CMp,q

∼= Vp,q ⊕ Vp+1,q−1 ⊕ · · · ⊕ Vp+q−1,1 ⊕ V tr.

Since the Specht representations Vλ are all irreducible, this is the desired decomposition.
Now, take an integer n ≥ 4.

4. As a particular case of the previous question, show that the following Sn-representations
are isomorphic:

CMn−2,2 ∼= Vn−2,2 ⊕ V st ⊕ V tr.

Solution. This decomposition is obtained from Q3, using Vp+q−1,1 ∼= V st.
5. Recall the permutation representation V p = ⊕ni=1Cei of Sn, with σ · ei = eσ(i). Verify that

the following Sn-representations are isomorphic:
V p ⊗ V p ∼= V st ⊗ V st ⊕ 2V st ⊕ V tr,

Λ2(V p) ∼= Λ2(V st)⊕ V st.

Solution. The standard representation V st was defined as the complement of a degree 1
trivial sub-representation in V p, so V p ∼= V st ⊕ V tr. Using the arithmetic properties of
the operations ⊕ and ⊗ on Rep(Sn), we get

V p⊗V p ∼= (V st ⊕ V tr)⊗ (V st ⊕ V tr)
∼= V st ⊗ V st ⊕ V st ⊗ V tr ⊕ V tr ⊗ V st ⊕ V tr ⊗ V tr ∼= V st ⊗ V st ⊕ 2V st ⊕ V tr.

Further, let b1, . . . , bn−1 be a basis of V st, completed to a basis b0, b1, . . . , bn−1 of V p in
such a way that b0 spans a sub-representation ∼= V tr. A basis of Λ2(V p) is then given by
{bi⊗bj−bj⊗bi | 0 ≤ i < j < n}. Similarly, a basis of Λ2(V st) is given by {bi⊗bj−bj⊗bi | 1 ≤
i < j < n}. It remains to show that the vectors {f(bj) := b0 ⊗ bj − bj ⊗ b0 | 1 ≤ j < n}
span a sub-representation W of Λ2(V p) isomorphic to V st. For any σ ∈ Sn, one has

σ · f(bj) = σ · (b0 ⊗ bj − bj ⊗ b0) = σ · b0 ⊗ σ · bj − σ · bj ⊗ σ · b0 = f(σ · bj).
We used the consequence σ ·b0 = b0 of Cb0 ∼= V tr. HenceW is indeed a sub-representation,
and the linear map V st → W defined on generators as bj 7→ f(bj) is an Sn-rep. isomor-
phism.

6. Using the interpretation of Mn−2,2 in terms of Young tabloids, prove
S2(V p) ∼= CMn−2,2 ⊕ V p,

and decompose the symmetric square S2(V p) into irreducibles.

Solution. A basis of S2(V p) is given by {ei,j := ei ⊗ ej + ej ⊗ ei | 1 ≤ i ≤ j ≤ n}. As was
done in the previous question, one shows that, for any σ ∈ Sn, σ · ei,i = eσ(i),σ(i) for all i,
and σ·ei,j = eσ(i),σ(j) or eσ(j),σ(i) for all i < j, according to which of σ(i) and σ(j) is smaller.
Thus the ei,i span a sub-representation of S2(V p) isomorphic to V p: the isomorphism is
established by sending ei,i to ei. Similarly, the ei,j with i < j span a sub-representation
isomorphic to CMn−2,2. The latter isomorphism is established by sending ei,j to the Young
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tabloid of shape (n− 2, 2), with the entries i, j in the second row, and all the remaining
entries from {1, 2, . . . , n} in the first row. Recall that Young tabloids are considered up
to row permutation, so we indeed have a bijection {ei,j | 1 ≤ i < j ≤ n} → Mn−2,2.
Further, σ acts on a Young tabloid by acting on the numbers in each cell. Hence our
bijection is compatible with the Sn-action, and thus defines an isomorphism of Sn-reps
⊕i<jCei,j ∼= CMn−2,2.

7. From all these isomorphisms of Sn-representations, deduce a decomposition of S2(V st)
into irreducibles.

Solution. On the one hand, we have
V p ⊗ V p ∼= V st ⊗ V st ⊕ 2V st ⊕ V tr ∼= S2(V st)⊕ Λ2(V st)⊕ 2V st ⊕ V tr.

On the other hand, we have
V p ⊗ V p ∼= S2(V p)⊕ Λ2(V p) ∼= CMn−2,2 ⊕ V p ⊕ Λ2(V st)⊕ V st

∼= (Vn−2,2 ⊕ V st ⊕ V tr)⊕ (V st ⊕ V tr)⊕ Λ2(V st)⊕ V st ∼= Vn−2,2 ⊕ Λ2(V st)⊕ 3V st ⊕ 2V tr.

Since each representation of a finite group uniquely decomposes into irreducibles, one
concludes

S2(V st) ∼= Vn−2,2 ⊕ V st ⊕ V tr.

8. Using the interpretation of Mn−2,1,1 in terms of Young tabloids, prove
V p ⊗ V p ∼= CMn−2,1,1 ⊕ V p.

Solution. A basis of V p⊗ V p is given by {ei⊗ ej | 1 ≤ i, j ≤ n}. Similarly to the previous
questions, one shows that the vectors {ei ⊗ ei | 1 ≤ i ≤ n} span a sub-representation
isomorphic to V p, and the vectors {ei ⊗ ej | 1 ≤ i 6= j ≤ n} span a sub-representation
isomorphic to CMn−2,1,1. To establish the second isomorphism, send ei⊗ ej to the Young
tabloid of shape (n− 2, 1, 1), with the entry i in the second row, j in the third row, and
all the remaining entries from {1, 2, . . . , n} in the first row.

9. Combine this with the isomorphisms of Sn-representations established above to show that
the irrep Vn−2,1,1 is isomorphic to a direct summand of Λ2(V st).

Solution. In class, we have seen that Vn−2,1,1 is isomorphic to a direct summand of
CMn−2,1,1 (Theorem 10), and hence of V p ⊗ V p (Q8). Further, in the proof of Q7, we
established the decomposition

V p ⊗ V p ∼= Vn−2,2 ⊕ Λ2(V st)⊕ 3V st ⊕ 2V tr.

Here all the direct summands, except possibly Λ2(V st), are irreducible and non-isomorphic
to Vn−2,1,1, since different Specht representations are non-isomorphic. So Vn−2,1,1 is iso-
morphic to a direct summand of Λ2(V st).

10. Determine the degree of the irrep Vn−2,1,1 using two methods:
(a) first, by counting standard Young tableaux;
(b) then, by the Hook length formula.

Solution. In a standard Young tableau of shape (n − 2, 1, 1), the entry 1 has to lie
in the top left cell. The only restrictions on the remaining cells are c2,1 < c3,1 and
c1,2 < c1,3 < . . . < c1,n−2. Here ci,j denotes the entry in the cell (i, j) of our Young
tableau. Thus the standard Young tableaux of shape (n − 2, 1, 1) are in bijection with
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the choices of 2 elements from the set {2, 3, . . . , n}, the elements to be placed below 1.
This yields

dimC Vn−2,1,1 = # SYTn−2,1,1 =
(
n− 1

2

)
= (n− 1)(n− 2)

2 .

Alternatively, the Hook length formula gives

dimC Vn−2,1,1 = n!
(n− 3)!2!n = (n− 1)(n− 2)

2 .

n n−3 n−4 . . . 1

2

1

11. Conclusion: Prove
Vn−2,1,1 ∼= Λ2(V st).

Solution. Since dimC V
st = n− 1, one has

dimC Λ2(V st) = (n− 1)(n− 2)
2 = dimC Vn−2,1,1.

Then the direct summand of Λ2(V st) isomorphic to Vn−2,1,1 has to be the whole Λ2(V st).

Exercise 2. We will next prove the Sn-representation isomorphism Vn−2,1,1 ∼= Λ2(V st), where
n ≥ 3, using an alternative method. For a permutation σ ∈ Sn, denote by f(σ) the number of
its fixed points.

1. Express the character of Λ2(V st) in terms of the function f .

Solution. From the Sn-representation isomorphism V p ∼= V st ⊕ V tr, and from χV
p(σ) =

f(σ), follows
χV

st(σ) = χV
p(σ)− χV tr(σ) = f(σ)− 1,

hence
χΛ2(V st)(σ) = 1

2(χV st(σ)2 − χV st(σ2)) = 1
2((f(σ)− 1)2 − (f(σ2)− 1))

= 1
2(f(σ)2 − f(σ2))− f(σ) + 1.

2. Given a permutation σ ∈ Sn, express the number of 1-cycles and the number of 2-cycles
in its decomposition into disjoint cycles in terms of the function f .

Solution. Given σ ∈ Sn, denote by ck(σ) the number of k-cycles in its decomposition into
disjoint cycles. A fixed point of σ ∈ Sn corresponds precisely to such a 1-cycle, giving

c1(σ) = f(σ).
Further, in σ2, a (2k − 1)-cycle of σ squares to a 2k − 1-cycle of σ2, and a 2k-cycle of σ
splits into two k-cycles. Thus c1(σ2) = c1(σ) + 2c2(σ), and

c2(σ) = 1
2(c1(σ2)− c1(σ)) = 1

2(f(σ2)− f(σ)).
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3. Use this and the Frobenius formula to express the character of Vn−2,1,1 in terms of the
function f . Conclude.

Solution. By the Frobenius formula, χVn−2,1,1(σ) is the coefficient of the monomial xn1x2
2x3

in the polynomial ∆(x1, x2, x3)Pλ′(x1, x2, x3), where
∆(x1, x2, x3) = (x1 − x2)(x1 − x3)(x2 − x3),

Pλ′(x1, x2, x3) = (xλ
′
1

1 + x
λ′1
2 + x

λ′1
3 ) · · · (xλ

′
k′

1 + x
λ′

k′
2 + x

λ′
k′

3 ),
and the permutation σ is of cycle type λ′ = (λ′1, . . . , λ′k′). All monomials in ∆(x1, x2, x3)
Pλ′(x1, x2, x3) are products of a monomial in ∆ and a monomial in Pλ′ . Let us look at the
factor x2

2x3 of our monomial xn1x2
2x3. For this factor, there are several possibilities with

respect to this ∆–Pλ′ decomposition:
(a) x2

2x3 comes entirely from ∆, where it enters with the coefficient 1. Then xn1 should
come from Pλ′ , where it enters with the coefficient 1. Overall coefficient: 1 · 1 = 1.

(b) x2x3 comes from ∆, and x2 from Pλ′ . The coefficient of x1x2x3 in ∆ is −1 + 1 = 0,
so we may ignore this case.

(c) x2
2 comes from ∆, and x3 from Pλ′ . The coefficient of x1x

2
2 in ∆ is −1. The coefficient

of xn−1
1 x3 in Pλ′ is the number of i with λ′i = 1 (one can get x3 only from the

factors (x1 + x2 + x3); other factors give larger powers of x3). But this is precisely
c1(σ) = f(σ). Overall coefficient: (−1) · f(σ) = −f(σ).

(d) x2 comes from ∆, and x2x3 from Pλ′ . The coefficient of x2
1x2 in ∆ is 1. Similarly

to the previous case, the coefficient of xn−2
1 x2x3 in Pλ′ is the number of i 6= j

with λ′i = λ′j = 1, which is c1(σ)(c1(σ) − 1) = f(σ)(f(σ) − 1). Overall coefficient:
f(σ)2 − f(σ).

(e) x3 comes from ∆, and x2
2 from Pλ′ . The coefficient of x2

1x3 in ∆ is −1. The coefficient
of xn−2

1 x2
2 in Pλ′ is the number of i < j with λ′i = λ′j = 1, plus the number of i

with λ′i = 2. These two choices correspond to the two occurrences of x2 coming
respectively from different and from the same factor of Pλ′ . Overall coefficient:
(−1)·(1

2c1(σ)(c1(σ)−1)+c2(σ)) = −1
2(f(σ)(f(σ)−1)+(f(σ2)−f(σ))) = −1

2(f(σ)2+
f(σ2)) + f(σ).

(f) x2
2x3 comes entirely from Pλ′ . This is impossible, since ∆ does not contain the

monomial x3
1.

So, the overall coefficient of xn1x2
2x3 in ∆Pλ′ is

1− f(σ) + (f(σ)2 − f(σ)) + (−1
2(f(σ)2 + f(σ2)) + f(σ))

= 1
2(f(σ)2 − f(σ2))− f(σ) + 1 = χΛ2(V st)(σ).

Since the representations Vn−2,1,1 and Λ2(V st) have the same characters, they are isomor-
phic.

Exercise 3.
1. Build the character table of the alternating group A5 using that of the symmetric group
S5 (constructed in Lecture 12).

Solution. As was explained in class, all irreps of A5 are obtained from those of S5 by
restriction, followed by splitting in two the restrictions of the irreps Vλ with self-conjugate
λ = λt. So the character table of the alternating group A5 is obtained from that of the
symmetric group S5 by removing columns corresponding to odd permutations, leaving
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only one row from each couple of rows (V, V ′ = V ⊗ V sgn), and, for each self-conjugate
λ, splitting in two the row Vλ and the column corresponding to the cycle type H(λ).
Recall the character table of S5:

#C 1 10 20 30 24 15 20
S5 Id (12) (123) (1234) (12345) (12)(34) (12)(345)
V tr 1 1 1 1 1 1 1
V sgn 1 −1 1 −1 1 1 −1
V st 4 2 1 0 −1 0 −1

(V st)′ 4 −2 1 0 −1 0 1
Λ2(V st) 6 0 0 0 1 −2 0
U 5 1 −1 −1 0 1 1
U ′ 5 −1 −1 1 0 1 −1

After all removals, one gets

#C 1 20 24 15
Id (123) (12345) (12)(34)

V tr 1 1 1 1
V st 4 1 −1 0

Λ2(V st) 6 0 1 −2
U 5 −1 0 1

The only self-conjugate λ for n = 5 is λ = (3, 1, 1), with H(λ) = (5).

Indeed, since n = 5 is odd, a self-conjugate λ should have an odd number of cells on the
main diagonal, and a tableau with ≥ 3 diagonal cells has ≥ 32 = 9 cells in total.
So we should split the row corresponding to V3,1,1 ∼= Λ2(V st) into two,

ResS5
A5 Λ2(V st) ∼= Z1 ⊕ Z ′1.

We should also split the column corresponding to the 5-cycle into two. Restricted to
A5, the conjugacy class of (12345) splits into two classes: that of (12345) and that of
(12)(12345)(12)−1 = (21345).

#C 1 20 12 12 15
A5 Id (123) (12345) (21345) (12)(34)

ResV tr 1 1 1 1 1
ResV st 4 1 −1 −1 0
Z1 3 0 −1
Z ′1 3 0 −1

ResU 5 −1 0 0 1

The empty cells are determined by a formula seen in class. Herem = 1
2(n−k) = 1

2(5−1) =
2, where k = 1 is the number of parts in the partition H(λ) = (5). Further,

θ± := 1
2((−1)m ±

√
(−1)mµ1 · · ·µk) = 1

2(1±
√

5).
Our character table can now be completed as follows:
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#C 1 20 12 12 15
A5 Id (123) (12345) (21345) (12)(34)
V tr 1 1 1 1 1

ResV st 4 1 −1 −1 0
Z1 3 0 θ+ θ− −1
Z ′1 3 0 θ− θ+ −1

ResU 5 −1 0 0 1

2. Decompose into irreducibles the symmetric and the alternating squares S2(ResS5
A5 V

st) and
Λ2(ResS5

A5 V
st).

Solution. We first compute the character of these reps, using formulas from Lecture 12:

C2 Id (123) (21345) (12345) Id
C Id (123) (12345) (21345) (12)(34)

ResV st 4 1 −1 −1 0
Λ2(ResV st) 6 0 1 1 −2
S2(ResV st) 10 1 0 0 2

The only delicate point here is the computation of the class of (12345)2 (the case of
(21345) being similar). One has

(12345)2 = (13524) = (245)(21345)(245)−1,

which is conjugate to (21345) in A5 since (245) is an even permutation, (245) ∈ A5.
Comparing with the previous table, or computing inner products of characters, one gets
the desired decompositions:

Λ2(ResV st) ∼= Z1 ⊕ Z ′1, S2(ResV st) ∼= ResU ⊕ ResV st ⊕ V tr.

3. Decompose into irreducibles the induced representations IndA5
A4 V

tr and IndA5
A4 ResS4

A4 V
st.

You may use the character table of the alternating group A4 from Lecture 21.

Solution. First, let us compute the restrictions ResA5
A4 for all irreps of A5. For this, one

should remove from the character table of A5 the columns corresponding to conjugacy
classes of A5 having empty intersection with A4. Such classes are [(12345)] and [(21345)]:

Id (123) (12)(34)
ResA5

A4 V
tr 1 1 1

ResA5
A4 ResS5

A5 V
st 4 1 0

ResA5
A4 Z1 3 0 −1

ResA5
A4 Z

′
1 3 0 −1

ResA5
A4 ResS5

A5 U 5 −1 1

Comparing with the character table of A4:

A4 Id (123) (132) (12)(34)
V tr 1 1 1 1

ResS4
A4 V

st 3 0 0 −1
W1 1 e2πi/3 e−2πi/3 1
W ′

1 1 e−2πi/3 e2πi/3 1

7



one decomposes all the restrictions into irreps:
ResA5

A4 V
tr ∼= V tr, ResA5

A4 ResS5
A5 V

st ∼= ResV st ⊕ V tr,

ResA5
A4 Z1 ∼= ResA5

A4 Z
′
1
∼= ResV st, ResA5

A4 ResS5
A5 U

∼= ResV st ⊕W1 ⊕W ′
1.

By the Frobenius reciprocity law, V ∈ Irrep(A5) enters into the decomposition of IndA5
A4 V

tr into
irreps with the multiplicity of V tr in ResA5

A4 V . Hence
IndA5

A4 V
tr ∼= V tr ⊕ ResS5

A5 V
st.

Similarly,
IndA5

A4 ResS4
A4 V

st ∼= ResS5
A5 V

st ⊕ Z1 ⊕ Z ′1 ⊕ ResS5
A5 U.
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