
TCD – Hilary term 2017 MA3416: Group Representations

Homework 2: Character tables

Instructions. Try to give concise but precise answers. When answering a question, you may
use the previous questions of the same exercise, even if you have not solved those.

Remark. We propose two conceptually different approaches to the study of the two groups
below. For the first one, we describe some (and as it turns out, all) of its irreps, and use them
to deduce important properties of the group (such as the complete list of its element). For
the second one, we first explore the group itself, and then build the study of its irreps on our
observations.

Exercise 1. Character table for the quaternion group Q

Consider the group Q defined by generators and relations as follows:

Q = 〈1, i, j,k |12 = 1, i2 = j2 = k2 = ijk = 1〉.

Here 1 is the neutral element of Q. We will also use notation x = 1x for all x ∈ {i, j,k}.
Remark: If you do not recognise these relations, I strongly recommend you to read about quater-
nions, and include Brougham Bridge into your next Dublin walk!

1. Determine all representations of Q of degree 1.

Solution. We are looking for all maps ρ : {1, i, j,k} → C∗ satisfying

ρ(1)2 = 1, ρ(i)2 = ρ(j)2 = ρ(k)2 = ρ(i)ρ(j)ρ(k) = ρ(1). (1)

This implies

ρ(1) = ρ(1)3 = ρ(i)2ρ(j)2ρ(k)2 = (ρ(i)ρ(j)ρ(k))2 = ρ(1)2.

Since ρ(1) 6= 0, this yields ρ(1) = 1. Then (1) rewrites as

ρ(i) = ±1, ρ(j) = ±1, ρ(k) = ±1, ρ(i)ρ(j)ρ(k) = 1.

This system has 4 solutions: either ρ(i) = ρ(j) = ρ(k) = 1 (the trivial rep.), or one of
them is 1 and the two remaining ones are −1.

2. Check that the formulas

ρ(1) =
(
−1 0
0 −1

)
, ρ(i) =

(
i 0
0 −i

)
, ρ(j) =

(
0 1
−1 0

)
, ρ(k) =

(
0 i
i 0

)

define a representation (V, ρ) of Q of degree 2.

Solution. All these matrices are invertible. A direct computation using matrix multipli-
cation shows that they satisfy relations (1), where 1 in ρ(1)2 = 1 is replaced with the unit
matrix

(
1 0
0 1

)
.

1



3. Is this representation irreducible?

Solution. Yes. Indeed, its non-trivial sub-rep. U must be of degree 1: U = Cu for some
u 6=

(
0
0

)
. This u has to be an eigenvector for the four matrices from Q2. The matrix

ρ(i) has distinct eigenvalues i,−i, with eigenvectors
(

1
0

)
and

(
0
1

)
respectively. Thus u is

a non-zero multiple of
(

1
0

)
or
(

0
1

)
. But none of these is an eigenvector for ρ(j).

4. Is Q an abelian group?

Solution. No: all irreps of a finite abelian group are of degree 1.
5. Consider the subset X = {1, i, j,k,1, i, j,k} of Q. Using the previous points, prove that

that these 8 elements are pairwise distinct.

Solution. It suffices to show that for any pair of elements from X, there is an irrep of Q
taking different values on them. Degree 1 irreps take the same value on x and x for all
x ∈ {1, i, j,k}. Apart from these pairs, they distinguish all the elements of X. Now, for
the representation (V, ρ) from Q2,

ρ(x) = ρ(1x) = ρ(1)ρ(x) = −ρ(x) 6= ρ(x)

for all x ∈ {1, i, j,k}.
6. Show that 1 lies in the center of Q (i.e., commutes with all elements of Q).

Solution. 1 clearly commutes with itself. Further,

1i = 1 12 = 13 = 12 1 = i1.

The same argument works for j and k. Since 1 commutes with the generators of Q, it
has to commute with all elements of Q.

7. Use this to simplify the products xx and xx for all x ∈ {i, j,k}.

Solution. xx = x1x = 1xx = 1 1 = 1, xx = 1xx = 1 1 = 1.

8. Verify the relations ij = k and ji = k.

Solution. ij = ij1 = ijkk = 1 k = 1 1k = k. Further, ijji = i1i = 1ii = 1 1 = 1, so
ji = (ij)−1 = (k)−1 = k.

9. Using the previous points, prove that the product of any two elements from X lies in X.
Summarise your computations in a multiplication table for X.

Solution. For any x ∈ {1, i, j,k} and y ∈ X, one has 1x = 1 1x = x, xy = 1xy, and
yx = y1x = 1yx. Further, 1 is the neutral element of Q. Thus it suffices to know how
to multiply elements from the smaller set {i, j,k}. Recall the defining relations for Q:
i2 = j2 = k2 = 1. Moreover, the relation ij = k from Q8 implies kij = kk = 1 = jj,
hence ki = j. Repeating the same argument, one gets jk = i. Taking inverses on each
side, one concludes ik = j and kj = i.
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1 i j k 1 i j k

1 1 i j k 1 i j k

i i 1 k j i 1 k j

j j k 1 i j k 1 i

k k j i 1 k j i 1
1 1 i j k 1 i j k

i i 1 k j i 1 k j

j j k 1 i j k 1 i

k k j i 1 k j i 1

10. Show that the inverse of any element from X lies in X.

Solution. The inverses can be determined from the above table:
x 1 i j k 1 i j k

x−1 1 i j k 1 i j k

11. Deduce that X is actually the whole set Q. Thus in Q9 you constructed a multiplication
table for the whole group Q.

Solution. The non-empty set X is stable under taking products and inverses. It is thus a
sub-group of Q. Moreover, it contains all the generators 1, i, j,k of Q. Thus it has to be
the whole group Q.

12. Verify that x is a conjugate of x for all x ∈ {i, j,k}.

Solution. i−1ji = i k = ik = j. Similarly, j−1kj = k and k−1ik = i.
13. Describe all conjugacy classes of Q.

Solution. By Q11 and Q12, there are at most 8 − 3 = 5 conjugacy classes in Q. On the
other hand, we have described 5 pairwise non-isomorphic irreps of Q, so # Conj(Q) =
# Irrep(Q) ≥ 5. Combining these two observations, one gets # Conj(Q) = 5. Thus there
are no conjugacy relations in Q other than those from Q12. Conclusion:

Conj(Q) = {[1], [1], [i], [j], [k]}.
The first two classes are of size 1, and the remaining three of size 2: [x] = {x, x}.

14. Construct a character table of Q.

Solution. # Irrep(Q) = # Conj(Q) = 5, so Q1 and Q2 describe all irreps of Q by explicit
matrices. It remains to compute the traces of these matrices:

#C 1 1 2 2 2

V
C [1] [1] [i] [j] [k]

V0 = V tr 1 1 1 1 1
V1 1 1 −1 −1 1
V2 1 1 1 −1 −1
V3 1 1 −1 1 −1
V 2 −2 0 0 0
V reg 8 0 0 0 0
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Double-checking: χV reg = ∑3
i=0 χ

Vi + 2χV , as expected.
15. For the representation V from Q2, decompose into irreps its tensor square V ⊗ V , its

symmetric square S2(V ), and its alternating square Λ2(V ).

Solution. Using the formulas

χV⊗V = χV χV , χS
2(V )(g) = χV (g)2 + χV (g2)

2 , χΛ2(V )(g) = χV (g)2 − χV (g2)
2 ,

one computes
C2 [1] [1] [1] [1] [1]
#C 1 1 2 2 2

V
C [1] [1] [i] [j] [k]

V 2 −2 0 0 0
V ⊗ V 4 4 0 0 0
S2(V ) 3 3 −1 −1 −1
Λ2(V ) 1 1 1 1 1

This immediately yields
Λ2(V ) ∼= V tr.

Further, (χV⊗V , χV⊗V ) = 1
8(1 · 42 + 1 · 42 + 2 · 02 + 2 · 02 + 2 · 02) = 1

832 = 4, which has two
decompositions into a sum of squares: 4 = 22 and 4 = 1 + 1 + 1 + 1. Thus the degree 4
representation V ⊗V decomposes as a direct sum of either 2 isomorphic irreps of degree 2,
or 4 pairwise non-isomorphic irreps of degree 1. The first case is impossible, since V ⊗ V
has as a direct summand Λ2(V ) ∼= V tr. The second case yields

V ⊗ V ∼= ⊕3
i=0Vi.

Finally, using V ⊗ V ∼= Λ2(V )⊕ S2(V ), one concludes

S2(V ) ∼= ⊕3
i=1Vi.

Double-checking: χS2(V ) = ∑3
i=1 χ

Vi , as expected.
16. What are the degrees of the three representations from the previous point?

Solution. 4, 3, 1. More generally, in class we have seen that for a degree n representation,
deg(V ⊗ V ) = n2, deg(S2(V )) = n(n+1)

2 , deg(Λ2(V )) = n(n−1)
2 .

Exercise 2. Character table for the dihedral group D8

Let D8 be the group of symmetries of a square S. Denote by r and by s respectively a
π
2 -rotation and a reflection, as shown in the figure:

12

3 4

r

12

3 4

s
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1. How many elements are there in D8? Write them all explicitly in terms of the generators
r and s.

Solution. A symmetry of S is uniquely determined by where it sends one vertex (say,
vertex 1), and whether or not it preserves the orientation of S. Moreover, all the 4 · 2 = 8
combinations of these parameters are realisable, by the following symmetries:

Id, r, r2, r3, s, sr2, sr, sr3.

Thus this is a complete list of the elements of D8, and #D8 = 8.
These symmetries can also be described geometrically. The first four are all the possible
rotations. The next two are the horizontal and the vertical symmetries. And the last
two are symmetries w.r.t. the two diagonals. The first four symmetries preserve the
orientation, and the last four do not.

2. Find an abelian subgroup of D8 of index 2.

Solution. Since r4 = Id, the elements Id, r, r2, r3 form a subgroup of D8. More precisely,
it is a cyclic subgroup of size 4, so it is abelian and has index 8

4 = 2 in D8.
3. Is D8 abelian?

Solution. No: srs−1 = srs = r3, since srs sends vertex 1 to 4 and preserves the orientation
of S (since r preserves the orientation and s does not).

4. What do the previous points tell you about the irreps of D8?

Solution. First, D8 has an abelian subgroup of index 2, thus (by a theorem seen in class)
the degree of any of its irreps is ≤ 2. Second, D8 itself is not abelian, so (by another
theorem seen in class) it has at least one irrep of degree 2.

5. Determine the number and the degrees of the irreps of D8.

Solution. Denote by di the degrees of the k irreps Vi of D8. As usual, we choose V0 = V tr.
One has ∑k−1

i=0 d
2
i = #D8 = 8; 1 ≤ di ≤ 2 and ∃di = 2 by the previous question; and

d0 = 1. These restrictions leave only one possibility (up to a reordering of the irreps):
k = 5, d0 = d1 = d2 = d3 = 1, d4 = 2.

6. Check the following relations in D8: r4 = s2 = 1, srs = r−1.

Solution. Track where all these symmetries send vertex 1, and whether or not they
preserve the orientation of S.

Remark: In fact, by a cardinality comparison, one obtains a presentation of D8 by gen-
erators and relations:

D8 ∼= 〈r, s | r4 = s2 = 1, srs = r−1〉.

7. Show that for any degree 1 representation (Vi, ρi) of D8, ρi(s) ∈ {±1} and ρi(r) ∈ {±1}.

Solution. By the previous question, all degree 1 irreps satisfy ρi(r)4 = ρi(s)2 = 1, and
ρi(s)ρi(r)ρi(s) = ρi(r)−1. The first relation yields ρi(s) ∈ {±1}. The second one yields
ρi(r)2 = ρi(s)−2 = 1, hence ρi(r) ∈ {±1}.
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8. Knowing the total number of degree 1 representations, explain why in the previous point
all the 4 possibilities have to be realised for some (Vi, ρi).

Solution. Since r and s generate D8 (by Q1), the values of ρi on these two elements
uniquely determine its values on the whole group D8. Since D8 has 4 distinct degree 1
irreps, all the 4 possible combinations of their values on r and s have to be realised.

9. Describe all conjugacy classes of D8.

Solution. # Conj(D8) = # Irrep(D8) = 5. Using relations from Q6, one computes srs−1 =
srs = r−1 = r3, rsr−1 = s−1r−1r−1 = sr2, and r(sr)r−1 = rs = s−1r−1 = sr3. Thus
r ∼ r3, s ∼ sr2, sr ∼ sr3, yielding al most 5 conjugacy classes. No new conjugacy
relations are possible, since they would further decrease the number of conjugacy classes.
Conclusion:

Conj(D8) = {[Id], [r2], [r], [s], [sr]}.
The first two classes are of size 1, and the remaining three of size 2: [r] = {r, r3},
[s] = {s, sr2}, [sr] = {sr, sr3}.

10. Construct a character table of D8.

Solution. The characters of all degree 1 irreps Vi can be deduced from Q7-Q8. The
character of the remaining degree 2 irrep is then deduced from V reg ∼= (⊕3

i=0Vi)⊕ 2V .

#C 1 1 2 2 2

V
C [Id] [r2] [r] [s] [sr]

V0 = V tr 1 1 1 1 1
V1 1 1 −1 −1 1
V2 1 1 1 −1 −1
V3 1 1 −1 1 −1
V 2 −2 0 0 0
V reg 8 0 0 0 0

11. The symmetries of our square S extend to linear transformations of the whole plane
R2 containing it, by fixing the center of S at the origin of R2. This yields a degree 2
representation U of D8. Write its matrices in the following basis:

12

3 4

e1

e2

Solution. It suffices to describe the matrices Mr and Ms for the generators r, s of D8;
all other elements of D8 are products of these generators and their inverses, and, since
a representation is a group homomorphism, the matrices for all these elements can be
expressed in terms of Mr and Ms.
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Now, the rotation r sends e1 to e2, and e2 to −e1. The horizontal symmetry s sends e1
to itself, and e2 to −e2. Their matrices are then

Mr =
(

0 −1
1 0

)
, Ms =

(
1 0
0 −1

)
.

Remark. In fact, this yields a real representation of D8, ρ : D8 → Mat2×2(R). But since
R injects into C, it can also be regarded as a complex representation.

12. Use them to compute the character of U , and then to decompose U into irreps.

Solution. χU(Id) = dimC(U) = 2, χU(r2) = tr(M2
r ) = tr

(
−1 0
0 −1

)
= −2, χU(r) = tr(Mr) =

0, χU(s) = tr(Ms) = 0, χU(sr) = tr(MsMr) = tr
(

0 −1
−1 0

)
= 0. Since χU = χV , one

concludes U ∼= V .
13. Considering the action of the symmetries of S on its vertices, explain how to interpret D8

as a subgroup of the symmetric group S4. Denote the inclusion map by ι : D8 → S4.

Solution. Enumerate the vertices of S, for example as in the picture at the beginning of
the exercise. Each symmetry from D8 permutes these 4 vertices, and to a composition of
symmetries corresponds a composition of permutations. So one obtains a group homo-
morphism ι : D8 → S4. It is injective, since the new position of all the vertices uniquely
determines the symmetry. Thus D8 is isomorphic to its image ι(D8) ⊂ S4, which is a
subgroup of S4.

14. For all g ∈ D8, write down explicitly the corresponding permutation ι(g).

Solution. Using the same vertex numbering as above, one has ι(Id) = Id, ι(r) = (1234),
ι(r2) = (13)(24), ι(r3) = (1432), ι(s) = (14)(23), ι(sr) = (24), ι(sr2) = (12)(34), ι(sr3) =
(13).

15. Using characters, for all irreps V of S4 (listed in Tutorial 2), decompose into irreps the
corresponding representation ι∗(V ) of D8. (See Tutorial 1 for the construction of ι∗.)

Solution. For (V, ρ) ∈ Irrep(S4) and g ∈ Q8, χι
∗(V )(g) = tr(ρ(ι(g)) = χV (ι(g)). Using

this, one computes the characters of all ι∗(V ) (irreducible characters are repeated here
for convenience):

ιC Id (12)(34) (1234) (12)(34) (12)

V
C [Id] [r2] [r] [s] [sr]

ι∗V tr 1 1 1 1 1
ι∗V sgn 1 1 −1 1 −1
ι∗V st 3 −1 −1 −1 1

ι∗V st,sgn 3 −1 1 −1 −1
ι∗W 2 2 0 2 0

V0 = V tr 1 1 1 1 1
V1 1 1 −1 −1 1
V2 1 1 1 −1 −1
V3 1 1 −1 1 −1
V 2 −2 0 0 0
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Comparing the two tables, or using the inner product of characters, one concludes:

ι∗V tr ∼= V tr, ι∗V sgn ∼= V3, ι∗W ∼= V tr ⊕ V3, ι∗V st ∼= V ⊕ V1, ι∗V st,sgn ∼= V ⊕ V2.

16. Are the groups Q and D8 isomorphic? (Hint: You can for example compare the number
of square roots of the neutral element in both groups.) How similar are their character
tables? Conclude.

Solution. These groups are not isomorphic, since in Q the neutral element 1 has only 2
square roots, 1 and 1 (all other elements square to 1), and in D8 the neutral element Id
has 4 square roots, Id, r2, and srα for 0 ≤ α ≤ 3. However, these two groups have
the same character tables (up to a permutation of rows and columns). Conclusion: The
character table does not determine the group uniquely.

Remark. Alternatively, one can argue that D8 has a degree 2 irrep with real matrices in
a good basis (Q11), whereas for the degree 2 irrep (V, ρ) of Q, the linear automorphism
ρ(i) of V has eigenvalues ±i /∈ R.
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