
TCD – Hilary term 2017 MA3416: Group Representations

Homework 1:
Representations and characters of finite groups

Instructions. Try to give concise but precise answers. When answering a question, you may
use the previous questions of the same exercise, even if you have not solved those. The marks
for the first 3 exercises sum up to 100; Exercise 4 gives you a bonus.

Exercise 1. Consider the group G of invertible upper triangular matrices
(
∗ ∗
0 ∗

)
over C. Let

ρ : G→ Mat2×2(C) be the inclusion map.
1. Show that (C2, ρ) is a representation of G.
2. What is the degree of ρ?
3. Prove that ρ has precisely one sub-representation of degree 1.
4. Is this sub-representation isomorphic to a representation we have already seen?
5. Is ρ irreducible?
6. Is ρ indecomposable?
7. Under what condition is an indecomposable representation of a group necessarily irre-

ducible? Does this condition hold for our group G?
Remark: This example shows that for having the complete reducibility for representations, it
is essential to work with finite groups.

Solution.
1. By definition, ∀M ∈ G, the matrix ρ(M) = M is invertible, so ρ takes values in the

group Mat∗2×2(C) of invertible matrices. Further, ∀M1,M2 ∈ G, ρ(M1M2) = M1M2 =
ρ(M1)ρ(M2), so ρ is a group morphism G → Mat∗2×2(C). It thus endows C2 with a
G-representation structure.

2. The degree of ρ is dimC(C2) = 2.
3. The 1-dimensional sub-space C

(
1
0

)
is a sub-representation:

(
a b
0 c

)(
1
0

)
= a

(
1
0

)
. Suppose

that ρ has another sub-representation V = C
(
x
y

)
, with y 6= 0 (otherwise it coincides with

the first one). Then
(

1 1
0 1

)(
x
y

)
−
(
x
y

)
∈ V , i.e.,

(
y
0

)
∈ V . But then V contains two linearly

independent vectors
(
x
y

)
,
(
y
0

)
, which contradicts dimC(V ) = 1.

4. No. The only general representation of degree 1 we have seen is the trivial one. It is
isomorphic only to itself, since for any isomorphism φ : W → U , φ IdW φ−1 = IdU . And
in our case some matrices act non-trivially:

(
2 0
0 1

)(
1
0

)
= 2

(
1
0

)
.

5. No. It has a non-zero sub-representation C
(

1
0

)
which is proper, since dimC(C

(
1
0

)
) = 1 <

2 = dimC(C2).
6. Yes. Its non-trivial decomposition should have the form C2 = V1 ⊕ V2, where the Vi

are sub-representations of degree 1. But we have seen that C2 has only one such sub-
representation.

7. When the group is finite. (It is a consequence of Maschke’s theorem.) Our group G is
infinite, which explains why it can have a reducible but indecomposable representation.

Exercise 2. Consider the permutation representation V perm
n = ⊕ni=1Cei of the symmetric

group Sn, with Sn acting by σ · ei = eσ(i). Suppose n ≥ 3.
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1. Prove that V perm
n has precisely one sub-representation of degree 1. Denote it by L.

2. Identify the representation L.
3. Define a linear map ε : V perm

n → C by ε(ei) = 1 for all i. Show that V st
n = Ker ε is a

sub-representation of V perm
n . It is called the standard representation of Sn.

4. What is the degree of V st
n ?

5. Give a basis of V st
n .

6. Verify that V st
n is irreducible.

7. Show that the Sn-representations V perm
n and V tr ⊕ V st

n are isomorphic. (Here V tr is the
trivial degree 1 representation.)

8. Express the characters of V perm
n and V st

n in terms of fixed point sets for permutations.
9. A representation ρ : G → AutC(V ) is called faithful if the map ρ is injective. Which of

our representations V tr, V perm
n , V st

n are faithful?

Solution.
1. Suppose that Ce is a sub-representation of degree 1, with e = ∑n

i=1 αiei, αi ∈ C, and
not all the αi are zero. Suppose that αi 6= αj for some i, j. Then the sub-representation
Ce contains e − (ij) · e = (αi − αj)(ei − ej), and thus ei − ej. Since n ≥ 3, there is a
k /∈ {i, j}, 1 ≤ k ≤ n. Then Ce also contains (ik) · (ei − ej) = ek − ej which is not
proportional to ei − ej, and thus Ce cannot have dimension 1. Conclusion: αi = αj
for all i, j, that is, Ce = C(∑n

i=1 ei). This is indeed a sub-representation: ∀σ ∈ Sn,
σ · (∑n

i=1 ei) = ∑n
i=1 eσ(i) = ∑n

i=1 ei.
2. It is the trivial representation: above we showed that all σ ∈ Sn act on it trivially.
3. Since σ · (∑n

i=1 αiei) = ∑n
i=1 αieσ(i),

ε(
n∑
i=1

αiei) =
n∑
i=1

αi = ε(σ · (
n∑
i=1

αiei)). (1)

Hence ε(∑n
i=1 αiei) = 0 implies ε(σ · (∑n

i=1 αiei)) = 0, and Ker ε is Sn-invariant.
Alternatively, one can use (1) to show that ε ∈ HomSn(V perm

n , V tr), and recall that a
kernel of a morphism of representations is itself a representation (seen in class).

4. dimC(Ker ε) = dimC(V perm
n ) − dimC(Im ε) = n − 1. We used that Im ε = C, since it is a

C-linear sub-space of C containing ε(e1) = 1.
5. Ker ε = {∑n

i=1 αiei|
∑n
i=1 αi = 0, αi ∈ C} = {∑n−1

i=1 αiei − (∑n−1
i=1 αi)en|αi ∈ C} =

{∑n−1
i=1 αi(ei − en)|αi ∈ C}. Thus the n − 1 vectors ei − en, 1 ≤ i ≤ n − 1, span Ker ε.

To show that they form a basis of Ker ε, we need to check that they are also linearly
independent: αi(ei − en) = 0 implies, by looking at the coefficient of each ei, that all αi
vanish.

6. Suppose that V st
n has a non-zero sub-representation U . Take a non-zero element e =∑n

i=1 αiei of U . One has αi 6= αj for some i, j — otherwise ε(e) = 0 would imply e = 0.
Repeating the argument from Question 1, one gets ei − ej ∈ U . Then, for each 1 ≤ m ≤
n−1, take any permutation σ sending i to m and j to n. Then em−en = σ · (ei−ej) ∈ U .
So U contains a basis of V st

n . Thus U has to be the whole V st
n .

7. Since L ∼= V tr, it suffices to show V perm
n = L⊕V st

n . First, dimC(V perm
n ) = n = dimC(V st

n )+
dimC(L). Second, e ∈ L∩V st

n implies e = α(∑n
i=1 ei) and 0 = ε(e) = αn. But then α = 0,

hence e = 0. So L ∩ V st
n = {0}.

8. We have seen that χV perm
n (σ) = #{1, 2, . . . , n}σ (the number of elements in {1, 2, . . . , n}

fixed by σ). Then χV st
n (σ) = χV

perm
n (σ)− χV tr

n (σ) = #{1, 2, . . . , n}σ − 1.
9. V tr is clearly not faithful: it sends all σ ∈ Sn to the same element 1 ∈ C∗. V perm is faithful:
ρperm(σ) = IdV perm means ∀i, σ · ei = ei, that is σ(i) = i; but the only permutation fixing
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all i is Id. V st
n is also faithful: since ρperm ∼= ρst⊕ρtr, and ρtr(σ) = 1 for all σ, ρst(σ) = IdV st

implies ρperm(σ) = IdV perm , hence, as shown above, σ = Id.

Exercise 3. In this exercise we will learn how to deform irreps for getting new ones.
Consider a finite group G and its representations (V, ρ) of degree k, and (C, ω) of degree 1.
1. Verify that the map

G→ AutC(V ),
g 7→ ω(g)ρ(g),

defines another G-representation on V . Denote it by (V ω, ρω).
2. How are the characters χρ and χρω related?
3. When do these characters coincide?
4. Show that the G-representation V is irreducible if and only if V ω is so.
5. When are these two representations isomorphic?

Example: Specialise to the group G = Sn, n ≥ 4, with the standard representation (V st
n , ρ)

from Exercise 2. Put ω(σ) = sgn(σ).
6. Verify that the signature sgn defines a degree 1 representation of Sn.
7. Show that V st,sgn

n is an irreducible Sn-representation, not isomorphic to V st
n .

Solution.
1. The map ω takes values in AutC(C), which is the group C∗ of non-zero complex numbers.

Indeed, a C-linear map from C to itself is necessarily a multiplication by a non-zero scalar.
Then ∀g ∈ G, ω(g)ρ(g) is a C-linear automorphism of V multiplied by a non-zero scalar,
which is still in AutC(V ). Hence ρω is a well-defined map G → AutC(V ). It remains
to check that this is a group morphism: ρω(gh) = ω(gh)ρ(gh) = (ω(g)ω(h))ρ(g)ρ(h) =
(ω(g)ρ(g))(ω(h)ρ(h)) = ρω(g)ρω(h).

2. χρω(g) = tr(ρω(g)) = tr(ω(g)ρ(g)) = ω(g) tr(ρ(g)) = ω(g)χρ(g). Thus, χρω = ωχρ, where
maps G→ C are multiplied pointwise.

3. When χρ(g) = ω(g)χρ(g) for all g. That is, ∀g ∈ G, either χρ(g) should vanish, or ω(g)
should be 1.

4. (V, ρ) is irreducible⇐⇒ (χρ, χρ) = 1⇐⇒ 1
#G

∑
g∈G |χρ(g)|2 = 1⇐⇒ 1

#G
∑
g∈G |χρω(g)|2 =

1⇐⇒ (χρω , χρω) = 1⇐⇒ (V ω, ρω) is irreducible. Here we used |χρω(g)| = |ω(g)||χρ(g)| =
|χρ(g)|. Indeed, our group is finite, so gk = 1 for some k, hence ω(g)k = 1, and ω(g) is a
root of unity.

5. When their characters coincide.
6. The signature sgn takes values ±1 ∈ C∗. Further, it is a multiplicative map: ∀σ1, σ2 ∈ Sn,

sgn(σ1σ2) = sgn(σ1) sgn(σ2), since if permutations σi can be written using ni transposi-
tions, then σ1σ2 can be written using n1 + n2 of them.

7. In Exercise 2, we have seen that V st
n is irreducible, and χV st

n (σ) = #{1, 2, . . . , n}σ−1. By
Question 4, V st,sgn

n is then irreducible as well. Now, consider the transposition (12) ∈ Sn.
One has χV st

n ((12)) = #{1, 2, . . . , n}(12)−1 = (n−2)−1 = n−3 > 0, and sgn((12)) = −1.
Then, by Questions 3 and 5, V st,sgn

n � V st
n .
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