
MA1S11A – TCD, Michaelmas term 2017, Week 12 Victoria Lebed

Homework/Tutorial 10

Marks: each question is worth 2 marks.

What this homework is about

You will learn how to compute definite integrals, and explore their relation with indefinite in-
tegrals and area computation.

Reminder

The area A under the graph of a continuous non-negative function f on an interval [a,b] is
defined as follows. For all integers N ,

1) Divide [a,b] into N subintervals I1, . . . IN of equal size ∆N = b−a
N .

2) On each Ik , choose some point x∗
k .

3) On each Ik , approximate the figure under the graph of f by the rectangle ∆N × f (x∗
k ).

4) Compute the total area
∑N

k=1 f (x∗
k )∆N of these small rectangles.

The area A is defined as the limiting value of these sums: A = lim
N→+∞

N∑
k=1

f (x∗
k )∆N .

The definite integral
∫ b

a f (x)d x of a function f on [a,b] is the limit of similar sums (called
Riemann sums), where the subintervals Ik are no longer of the same size, but become arbitrarily
small: max

k
|Ik | →

N→+∞
0. The function is called (Riemann) integrable on [a,b] if this limit exists.

For a continuous non-negative f ,
∫ b

a f (x)d x computes the area under the graph of f on [a,b].
The following formulas are useful for computing Riemann sums:

n∑
k=1

k = n(n +1)

2
,

n∑
k=1

k2 = n(n +1)(2n +1)

6
,

n∑
k=1

k3 = n2(n +1)2

4
.

Definite integrals are usually evaluated using indefinite integrals, thanks to

The Fundamental Theorem of Calculus. Let f be continuous on [a,b]. Then:

Part 1: f is Riemann integrable on [a,b], and
∫ b

a
f (x)d x =

[∫
f (x)d x

]b

a
= F (b)−F (a), where

F is any antiderivative of f on [a,b];
Part 2: the function F (x) = ∫ x

a f (t )d t is an antiderivative of f on [a,b].

Properties of definite integrals:

• linearity:
∫ b

a
(c1 f1(x)+·· ·+cn fn(x))d x = c1

∫ b

a
f1(x)d x +·· ·+cn

∫ b

a
fn(x)d x;

• u-substitution:
∫ b

a
f (g (x))g ′(x)d x =

∫ g (b)

g (a)
f (u)du;

• integration by parts:
∫ b

a
f ′(x)g (x)d x = [

f (x)g (x)
]b

a −
∫ b

a
[ f (x)g ′(x)]d x;

•
∫ a

a
f (x)d x = 0;

∫ a

b
f (x)d x =−

∫ b

a
f (x)d x;

• additivity:
∫ c

a
f (x)d x =

∫ b

a
f (x)d x +

∫ c

b
f (x)d x;

• monotony: f (x) ≥ g (x) on [a,b] =⇒
∫ b

a
f (x)d x ≥

∫ b

a
g (x)d x.
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Questions

1. Consider the function F (x) =
∫ x

1

d tp
3t +1

.

(a) What is its natural domain?
(b) Compute F ′(x).
(c) Explain why F increases on its domain.
(d) Compute F (0).

Solution.
(a) The function f (t ) = 1p

3t+1
is defined and continuous when 3t + 1 > 0, that is, for t ∈

(−1
3 ,+∞). Since a continuous function is always Riemann integrable, and 1 ∈ (−1

3 ,+∞),
the natural domain of F is also (−1

3 ,+∞).
(b) By the Fundamental Theorem of Calculus, F (x) = ∫ x

1 f (t )d t is an antiderivative of f , so
F ′(x) = f (x) = 1p

3x+1
.

(c) Since F ′(x) = f (x) = 1p
3x+1

> 0 for all x ∈ (−1
3 ,+∞), the function F increases on its do-

main.
A second explanation: F (x) is the area under the graph of the continuous non-negative
function f on [1, x], so it increases when the interval [1, x] extends to the right.

(d) We’ll use the substitution u = 3t +1, with du = 3d t , u(1) = 4, u(0) = 1:

F (0) =
∫ 0

1

d tp
3t +1

=
∫ 1

4

du

3
p

u
= 1

3

[
2
p

u
]1

4 =
2

3
(1−2) =−2

3
.

2. Compute the following definite integrals:

(a)
∫ 0

1
x2 5

√
x3 −1d x;

(b)
∫ e2

1
x ln x d x.

Solution.
(a) We’ll use the substitution u(x) = x3 −1, with du = 3x2d x, u(1) = 0, u(0) =−1:∫ 0

1
x2 5

√
x3 −1d x =

∫ −1

0

5
p

u
du

3
= 1

3

[
5

6
u

6
5

]−1

0
= 5

18
(1−0) = 5

18
.

(b) We’ll use integration by parts with f (x) = x2

2 and g (x) = ln x:∫ e2

1
x ln x d x =

[
x2

2
ln x

]e2

1
−

∫ e2

1

x2

2

d x

x
= (

e4

2
ln(e2)− 12

2
ln1)−

∫ e2

1

x

2
d x

= (
e4

2
·2−0)−

[
1

4
x2

]e2

1
= e4 − 1

4
(e4 −1) = 3

4
e4 + 1

4
.

3. Compute ∫ −1

1
f (x)d x, where f (x) = arctan(x)p

x2 +1cos(x)
,

without finding the antiderivative of f .

(Hint. Compare
∫ 0

1
f (x)d x and

∫ −1

0
f (x)d x.)
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Solution. The functions
p

x2 +1 and cos(x) are even, and arctan(x) is odd, therefore f is odd.

Keeping this in mind, let us make the following substitution in
∫ −1

0
f (x)d x:

u(x) =−x, du =−d x, u(0) = 0, u(−1) = 1.

We get ∫ −1

0
f (x)d x =

∫ 1

0
f (−u) (−du) =

∫ 1

0
(− f (u)) (−du) =

∫ 1

0
f (u)du.

So, ∫ −1

1
f (x)d x =

∫ 0

1
f (x)d x +

∫ −1

0
f (x)d x =

∫ 0

1
f (x)d x +

∫ 1

0
f (x)d x =

∫ 1

1
f (x)d x = 0.

Remark. Using the same argument, one can show that for any odd function f Riemann

integrable on [−a, a], we have
∫ a

−a
f (x)d x = 0.

4. Consider the functions f (x) = sin(π2 x) and g (x) = x on [0,1].
(a) Show that on [0,1], the graph of f lies above the graph of g .

(Hint. Consider the difference h(x) = f (x)− g (x). To see that h(x) ≥ 0 on [0,1], find the
minimum of h on [0,1].)

(b) Compute the area between the two graphs on [0,1].

Solution. Consider the difference of the two functions, h(x) = f (x)− g (x) = sin(π2 x)− x. To
determine its minimal value, we need to compute its derivative:

h′(x) = sin(
π

2
x)′−x ′ = cos(

π

2
x)
π

2
−1.

When x changes between 0 and 1, cos(π2 x) decreases from cos(0) = 1 to cos(π2 ) = 0, so h′(x)
decreases from π

2 −1 (which is positive) to −1. This means that h(x) increases up to a certain
point (namely, x = 2

π arccos( 2
π )) and then decreases. Therefore, it takes its minimal value at

one of its endpoints, 0 or 1. A direct computation yields

h(0) = sin(0)−0 = 0, h(1) = sin(
π

2
)−1 = 0.

Hence this minimal value is 0, and h(x) ≥ 0 on [0,1]. In other words, f (x) ≥ g (x) on [0,1], so
the graph of f lies above the graph of g .
As a result, the area A between the two graphs is the difference between the area under the
graph of f and area under the graph of g :

A =
∫ 1

0
f (x)d x −

∫ 1

0
g (x)d x =

∫ 1

0
sin(

π

2
x)d x −

∫ 1

0
x d x =

[
− 2

π
cos(

π

2
x)

]1

0
−

[
x2

2

]1

0

=− 2

π
(cos(

π

2
)−cos(0))− (

1

2
−0) = 2

π
− 1

2
.

5. Compute
∫ 1

0
x3 d x using two methods:

(a) explicit Riemann sums, where you divide the interval [0,1] into N equal parts and in
each part choose as the point x∗

k the left endpoint;
(b) the relation with the indefinite integral.

Compare the answers obtained.

Solution.
(a) According to the algorithm recalled in the Reminder, take a natural number N and di-

vide the interval [0,1] into N parts [0, 1
N ], [ 1

N , 2
N ], . . . , [ N−1

N ,1] of equal size 1
N . On each
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subinterval [ k−1
N , k

N ], choose its left endpoint k−1
N . Then the corresponding Riemann

sum for the function x3 on [0,1] becomes

03 · 1

N
+

(
1

N

)3

· 1

N
+·+

(
N −1

N

)3

· 1

N
= 1

N 4

N−1∑
k=1

k3 = 1

N 4

(N −1)2N 2

4
= 1

4
(1− 1

N
)2.

Here we applied the formula
n∑

k=1
k3 = n2(n +1)2

4
for n = N −1. When N gets arbitrary

large, 1
N approaches 0, so the numbers 1

4 (1− 1
N )2 approach 1

4 . Thus
∫ 1

0
x3 d x = 1

4
.

(b)
∫ 1

0
x3 d x =

[
x4

4

]1

0
= 1

4
(14 −04) = 1

4
.

The two methods for computing definite integrals yield the same result, but the second one
demands much less efforts!
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