Homework/Tutorial 10

Marks: each question is worth 2 marks.

What this homework is about

You will learn how to compute definite integrals, and explore their relation with indefinite integrals and area computation.

Reminder

The **area** *A* under the graph of a continuous non-negative function f on an interval [a, b] is defined as follows. For all integers *N*,

- 1) Divide [*a*, *b*] into *N* subintervals $I_1, \ldots I_N$ of equal size $\Delta_N = \frac{b-a}{N}$.
- 2) On each I_k , choose some point x_k^* .
- 3) On each I_k , approximate the figure under the graph of f by the rectangle $\Delta_N \times f(x_k^*)$.
- 4) Compute the total area $\sum_{k=1}^{N} f(x_k^*) \Delta_N$ of these small rectangles.

The area *A* is defined as the limiting value of these sums: $A = \lim_{N \to +\infty} \sum_{k=1}^{N} f(x_k^*) \Delta_N$.

The **definite integral** $\int_a^b f(x) dx$ of a function f on [a, b] is the limit of similar sums (called **Riemann sums**), where the subintervals I_k are no longer of the same size, but become arbitrarily small: $\max_k |I_k| \xrightarrow[N \to +\infty]{} 0$. The function is called **(Riemann) integrable** on [a, b] if this limit exists.

For a continuous non-negative f, $\int_a^b f(x) dx$ computes the area under the graph of f on [a, b]. The following formulas are useful for computing Riemann sums:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}, \qquad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}, \qquad \sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}.$$

Definite integrals are usually evaluated using indefinite integrals, thanks to

The Fundamental Theorem of Calculus. Let *f* be continuous on [*a*, *b*]. Then:

Part 1: *f* is Riemann integrable on [*a*, *b*], and $\int_{a}^{b} f(x) dx = \left[\int f(x) dx\right]_{a}^{b} = F(b) - F(a)$, where *F* is any antiderivative of *f* on [*a*, *b*];

~h

Part 2: the function $F(x) = \int_{a}^{x} f(t) dt$ is an antiderivative of f on [a, b].

Properties of definite integrals:

• linearity: $\int_{a}^{b} (c_1 f_1(x) + \dots + c_n f_n(x)) \, dx = c_1 \int_{a}^{b} f_1(x) \, dx + \dots + c_n \int_{a}^{b} f_n(x) \, dx;$

• *u*-substitution:
$$\int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(a)} f(u) du;$$

• integration by parts:
$$\int_{a}^{b} f'(x)g(x) dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} [f(x)g'(x)] dx$$

•
$$\int_{a}^{b} f(x) dx = 0; \qquad \int_{b}^{b} f(x) dx = -\int_{a}^{b} f(x) dx;$$

• additivity:
$$\int_{a}^{a} f(x) dx = \int_{a}^{a} f(x) dx + \int_{b}^{a} f(x) dx;$$

• monotony:
$$f(x) \ge g(x)$$
 on $[a, b] \implies \int_a^b f(x) \, dx \ge \int_a^b g(x) \, dx$.

Questions

- 1. Consider the function $F(x) = \int_{1}^{x} \frac{dt}{\sqrt{3t+1}}$.
 - (a) What is its natural domain?
 - (b) Compute F'(x).
 - (c) Explain why F increases on its domain.
 - (d) Compute F(0).

Solution.

- (a) The function $f(t) = \frac{1}{\sqrt{3t+1}}$ is defined and continuous when 3t + 1 > 0, that is, for $t \in (-\frac{1}{3}, +\infty)$. Since a continuous function is always Riemann integrable, and $1 \in (-\frac{1}{3}, +\infty)$, the natural domain of *F* is also $(-\frac{1}{3}, +\infty)$.
- (b) By the Fundamental Theorem of Calculus, $F(x) = \int_1^x f(t) dt$ is an antiderivative of f, so $F'(x) = f(x) = \frac{1}{\sqrt{3x+1}}$.
- (c) Since $F'(x) = f(x) = \frac{1}{\sqrt{3x+1}} > 0$ for all $x \in (-\frac{1}{3}, +\infty)$, the function *F* increases on its domain.

A second explanation: F(x) is the area under the graph of the continuous non-negative function f on [1, x], so it increases when the interval [1, x] extends to the right.

(d) We'll use the substitution u = 3t + 1, with du = 3dt, u(1) = 4, u(0) = 1:

$$F(0) = \int_{1}^{0} \frac{dt}{\sqrt{3t+1}} = \int_{4}^{1} \frac{du}{3\sqrt{u}} = \frac{1}{3} \left[2\sqrt{u} \right]_{4}^{1} = \frac{2}{3} (1-2) = -\frac{2}{3}$$

2. Compute the following definite integrals:

(a)
$$\int_{1}^{0} x^{2} \sqrt[5]{x^{3}-1} dx;$$

(b) $\int_{1}^{e^{2}} x \ln x dx.$

Solution.

(a)

We'll use the substitution
$$u(x) = x^3 - 1$$
, with $du = 3x^2 dx$, $u(1) = 0$, $u(0) = -1$:
$$\int_1^0 x^2 \sqrt[5]{x^3 - 1} dx = \int_0^{-1} \sqrt[5]{u} \frac{du}{3} = \frac{1}{3} \left[\frac{5}{6}u^{\frac{6}{5}}\right]_0^{-1} = \frac{5}{18}(1 - 0) = \frac{5}{18}.$$

(b) We'll use integration by parts with $f(x) = \frac{x^2}{2}$ and $g(x) = \ln x$:

$$\int_{1}^{e^{2}} x \ln x \, dx = \left[\frac{x^{2}}{2} \ln x\right]_{1}^{e^{2}} - \int_{1}^{e^{2}} \frac{x^{2}}{2} \frac{dx}{x} = \left(\frac{e^{4}}{2} \ln(e^{2}) - \frac{1^{2}}{2} \ln 1\right) - \int_{1}^{e^{2}} \frac{x}{2} \, dx$$
$$= \left(\frac{e^{4}}{2} \cdot 2 - 0\right) - \left[\frac{1}{4}x^{2}\right]_{1}^{e^{2}} = e^{4} - \frac{1}{4}(e^{4} - 1) = \frac{3}{4}e^{4} + \frac{1}{4}.$$

3. Compute

$$\int_{1}^{-1} f(x) dx, \quad \text{where } f(x) = \frac{\arctan(x)}{\sqrt{x^2 + 1}\cos(x)}$$

without finding the antiderivative of *f*. (*Hint*. Compare $\int_{1}^{0} f(x) dx$ and $\int_{0}^{-1} f(x) dx$.) *Solution.* The functions $\sqrt{x^2 + 1}$ and $\cos(x)$ are even, and $\arctan(x)$ is odd, therefore f is odd. Keeping this in mind, let us make the following substitution in $\int_{0}^{-1} f(x) dx$:

$$u(x) = -x$$
, $du = -dx$, $u(0) = 0$, $u(-1) = 1$.

We get

$$\int_0^{-1} f(x) \, dx = \int_0^1 f(-u) \, (-du) = \int_0^1 (-f(u)) \, (-du) = \int_0^1 f(u) \, du$$

So,

$$\int_{1}^{-1} f(x) \, dx = \int_{1}^{0} f(x) \, dx + \int_{0}^{-1} f(x) \, dx = \int_{1}^{0} f(x) \, dx + \int_{0}^{1} f(x) \, dx = \int_{1}^{1} f(x) \, dx = 0.$$

Remark. Using the same argument, one can show that for any odd function *f* Riemann integrable on [-a, a], we have $\int_{-a}^{a} f(x) dx = 0$.

- 4. Consider the functions $f(x) = \sin(\frac{\pi}{2}x)$ and g(x) = x on [0, 1].
 - (a) Show that on [0, 1], the graph of *f* lies above the graph of *g*. (*Hint*. Consider the difference h(x) = f(x) - g(x). To see that $h(x) \ge 0$ on [0, 1], find the minimum of *h* on [0, 1].)
 - (b) Compute the area between the two graphs on [0, 1].

Solution. Consider the difference of the two functions, $h(x) = f(x) - g(x) = \sin(\frac{\pi}{2}x) - x$. To determine its minimal value, we need to compute its derivative:

$$h'(x) = \sin(\frac{\pi}{2}x)' - x' = \cos(\frac{\pi}{2}x)\frac{\pi}{2} - 1$$

When *x* changes between 0 and 1, $\cos(\frac{\pi}{2}x)$ decreases from $\cos(0) = 1$ to $\cos(\frac{\pi}{2}) = 0$, so h'(x) decreases from $\frac{\pi}{2} - 1$ (which is positive) to -1. This means that h(x) increases up to a certain point (namely, $x = \frac{2}{\pi} \arccos(\frac{2}{\pi})$) and then decreases. Therefore, it takes its minimal value at one of its endpoints, 0 or 1. A direct computation yields

$$h(0) = \sin(0) - 0 = 0,$$
 $h(1) = \sin(\frac{\pi}{2}) - 1 = 0.$

Hence this minimal value is 0, and $h(x) \ge 0$ on [0,1]. In other words, $f(x) \ge g(x)$ on [0,1], so the graph of *f* lies above the graph of *g*.

As a result, the area A between the two graphs is the difference between the area under the graph of f and area under the graph of g:

$$A = \int_0^1 f(x) \, dx - \int_0^1 g(x) \, dx = \int_0^1 \sin(\frac{\pi}{2}x) \, dx - \int_0^1 x \, dx = \left[-\frac{2}{\pi}\cos(\frac{\pi}{2}x)\right]_0^1 - \left[\frac{x^2}{2}\right]_0^1$$
$$= -\frac{2}{\pi}(\cos(\frac{\pi}{2}) - \cos(0)) - (\frac{1}{2} - 0) = \frac{2}{\pi} - \frac{1}{2}.$$

5. Compute $\int_0^1 x^3 dx$ using two methods:

- (a) explicit Riemann sums, where you divide the interval [0,1] into *N* equal parts and in each part choose as the point x_k^* the left endpoint;
- (b) the relation with the indefinite integral.

Compare the answers obtained.

Solution.

(a) According to the algorithm recalled in the Reminder, take a natural number *N* and divide the interval [0,1] into *N* parts $[0, \frac{1}{N}], [\frac{1}{N}, \frac{2}{N}], ..., [\frac{N-1}{N}, 1]$ of equal size $\frac{1}{N}$. On each

subinterval $\left[\frac{k-1}{N}, \frac{k}{N}\right]$, choose its left endpoint $\frac{k-1}{N}$. Then the corresponding Riemann sum for the function x^3 on [0, 1] becomes

$$0^{3} \cdot \frac{1}{N} + \left(\frac{1}{N}\right)^{3} \cdot \frac{1}{N} + \dots + \left(\frac{N-1}{N}\right)^{3} \cdot \frac{1}{N} = \frac{1}{N^{4}} \sum_{k=1}^{N-1} k^{3} = \frac{1}{N^{4}} \frac{(N-1)^{2} N^{2}}{4} = \frac{1}{4} (1 - \frac{1}{N})^{2}.$$

Here we applied the formula $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$ for n = N - 1. When N gets arbitrary

large,
$$\frac{1}{N}$$
 approaches 0, so the numbers $\frac{1}{4}(1-\frac{1}{N})^2$ approach $\frac{1}{4}$. Thus $\int_0^1 x^3 dx = \frac{1}{4}$.
(b) $\int_0^1 x^3 dx = \left[\frac{x^4}{4}\right]_0^1 = \frac{1}{4}(1^4 - 0^4) = \frac{1}{4}$.

The two methods for computing definite integrals yield the same result, but the second one demands much less efforts!