Homework 1:

Representations and characters of finite groups

Instructions. Try to give concise but precise answers. When answering a question, you may use the previous questions of the same exercise, even if you have not solved those. The marks for the first 3 exercises sum up to 100; Exercise 4 gives you a bonus.

Exercise 1. Consider the group G of invertible upper triangular matrices $\begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$ over \mathbb{C} . Let $\rho: G \to \operatorname{Mat}_{2 \times 2}(\mathbb{C})$ be the inclusion map.

- 1. Show that (\mathbb{C}^2, ρ) is a representation of G.
- 2. What is the degree of ρ ?
- 3. Prove that ρ has precisely one sub-representation of degree 1.
- 4. Is this sub-representation isomorphic to a representation we have already seen?
- 5. Is ρ irreducible?
- 6. Is ρ indecomposable?
- 7. Under what condition is an indecomposable representation of a group necessarily irreducible? Does this condition hold for our group G?

Exercise 2. Consider the permutation representation $V_n^{perm} = \bigoplus_{i=1}^n \mathbb{C}e_i$ of the symmetric group S_n , with S_n acting by $\sigma \cdot e_i = e_{\sigma(i)}$. Suppose $n \ge 3$.

- 1. Prove that V_n^{perm} has precisely one sub-representation of degree 1. Denote it by L.
- 2. Identify the representation L.
- 3. Define a linear map $\varepsilon \colon V_n^{perm} \to \mathbb{C}$ by $\varepsilon(e_i) = 1$ for all *i*. Show that $V_n^{st} = \operatorname{Ker} \varepsilon$ is a sub-representation of V_n^{perm} . It is called the *standard representation* of S_n .
- 4. What is the degree of V_n^{st} ?
- 5. Give a basis of V_n^{st} .
- 6. Verify that V_n^{st} is irreducible.
- 7. Show that the S_n -representations V_n^{perm} and $V^{tr} \oplus V_n^{st}$ are isomorphic. (Here V^{tr} is the trivial degree 1 representation.)
- 8. Express the characters of V_n^{perm} and V_n^{st} in terms of fixed point sets for permutations.
- 9. A representation $\rho: G \to \operatorname{Aut}_{\mathbb{C}}(V)$ is called *faithful* if the map ρ is injective. Which of our representations $V^{tr}, V_n^{perm}, V_n^{st}$ are faithful?

Exercise 3. In this exercise we will learn how to deform irreps for getting new ones.

Consider a finite group G and its representations (V, ρ) of degree k, and (\mathbb{C}, ω) of degree 1.

1. Verify that the map

$$G \to \operatorname{Aut}_{\mathbb{C}}(V),$$

 $g \mapsto \omega(g)\rho(g),$

defines another G-representation on V. Denote it by $(V^{\omega}, \rho_{\omega})$.

- 2. How are the characters χ^{ρ} and $\chi^{\rho_{\omega}}$ related?
- 3. When do these characters coincide?
- 4. Show that the G-representation V is irreducible if and only if V^{ω} is so.
- 5. When are these two representations isomorphic?

Example: Specialise to the group $G = S_n$, $n \ge 4$, with the standard representation (V_n^{st}, ρ) from Exercise 2. Put $\omega(\sigma) = \operatorname{sgn}(\sigma)$.

- 6. Verify that the signature sgn defines a degree 1 representation of S_n .
- 7. Show that $V_n^{st, sgn}$ is an irreducible S_n -representation, not isomorphic to V_n^{st} .

Bonus Exercise 4. The aim of this exercise is to understand the set $\text{Rep}_1(G)$ of degree 1 representations of a finite group G.

- 1. Show that a degree 1 representation is necessarily irreducible.
- 2. Prove that two such representations are isomorphic if and only if they coincide as maps from G to $\operatorname{Mat}_{1\times 1}^*(\mathbb{C}) = \mathbb{C}^*$.

Denote by [G, G] the set of all finite products of commutators $g_1g_2g_1^{-1}g_2^{-1}$, with $g_1, g_2 \in G$. 3. Show that [G, G] is a normal subgroup of G.

[G, G] is called the *commutator subgroup* of G. The quotient group Ab(G) = G/[G, G] is called the *abelianisation* of G. Consider the quotient map $\pi \colon G \to Ab(G)$.

- 4. Verify that the quotient group Ab(G) is abelian.
- 5. How different can then $\operatorname{Rep}_1(\operatorname{Ab}(G))$ be from $\operatorname{Irrep}(\operatorname{Ab}(G))$?
- 6. Check that a degree 1 representation $\omega \colon G \to \mathbb{C}^*$ vanishes on [G, G]. It thus induces a map $\omega^* \colon \operatorname{Ab}(G) \to \mathbb{C}^*$.
- 7. Show that ω^* is a degree 1 representation of Ab(G).
- 8. Check that the maps

$$\begin{aligned} \operatorname{Rep}_1(G) &\leftrightarrow \operatorname{Rep}_1(\operatorname{Ab}(G)), \\ \omega &\mapsto \omega^*, \\ \theta \pi &\leftarrow \theta \end{aligned}$$

are mutually inverse bijections.

9. **Example:** Using the presentation of the symmetric group S_n in terms of the generators σ_i (Lecture 1), obtain a group isomorphism $Ab(S_n) \cong \mathbb{Z}_2$. Deduce from it a complete description of $\operatorname{Rep}_1(S_n)$.