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1 Yang–Baxter equation

✓ Object V in a monoidal category

(e.g. vector space / set).

✓ ff : V ˙2 → V ˙2.

Yang–Baxter equation (YBE):

ff1 ‹ ff2 ‹ ff1 = ff2 ‹ ff1 ‹ ff2 : V
˙3 → V ˙3

where ffi = Id
˙i−1
V ˙ff ˙ Id

˙´´´
V .

A map ff satisfying YBE is a braiding.

ff ←→
V V̇

V V̇

=

(Reidemeister III)
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1 Yang–Baxter equation

✓ Object V in a monoidal category

(e.g. vector space / set).

✓ ff : V ˙2 → V ˙2.

Yang–Baxter equation (YBE):

ff1 ‹ ff2 ‹ ff1 = ff2 ‹ ff1 ‹ ff2 : V
˙3 → V ˙3

where ffi = Id
˙i−1
V ˙ff ˙ Id

˙´´´
V .

A map ff satisfying YBE is a braiding.

“braiding = switching rule”

invertible braiding ff on V  

ff ←→
V V̇

V V̇

=

(Reidemeister III)

Bn → End(V ˙n)
i i+1 n

7→ ffi

7→ ff−1
i



2 Solutions to the YBE

1 Yetter–Drinfel 0d module over a Hopf algebra H:

✓ vector space M;

✓ H-action  : m˙ h 7→ m ˜ h;
✓ H-coaction ‹ : m 7→m(0) ˙m(1);

✓ compatibility: actions and coactions can be switched

(m ˜ h)(0) ˙ (m ˜ h)(1) = m(0) ˜ h(2) ˙ s(h(1))m(1)h(3)
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1 Yetter–Drinfel 0d module over a Hopf algebra H:

✓ vector space M;

✓ H-action  : m˙ h 7→ m ˜ h;
✓ H-coaction ‹ : m 7→m(0) ˙m(1);

✓ compatibility: actions and coactions can be switched

(m ˜ h)(0) ˙ (m ˜ h)(1) = m(0) ˜ h(2) ˙ s(h(1))m(1)h(3)

 braiding ffY D(m˙ n) = n(0) ˙m ˜ n(1)

‹



fi
switching

+ a toll

d All invertible f.-d. braidings.

d YDHH has nice categorical features : braided monoidal,

and even modular when H = kG for a finite group G

 link and 3-mld invariants.
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d Z[t]-module with a � b = ta + (1 − t)b.
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2 Solutions to the YBE

2 Self-distributive set (= shelf):

✓ set S;

✓ self-distributive binary operation �:

(a � b) � c = (a � c) � (b � c)

Rack: shelf with all tb : a 7→ a � b bijective.

Quandle: rack with a � a = a.

(SD) ⇐⇒ braiding ffSD(a; b) = (b; a � b)

´

�

fi

Rack axiom ⇐⇒ Reidemeister II move;

Quandle axiom ⇐⇒ Reidemeister I move.

 Invariants of braids, links, knotted surfaces & graphs.
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3 Crossed module of groups:

✓ group morphism ı : K → G;
✓ G-action ´ on K by group automorphisms;

✓ compatibility:

ı(k ´ g) = g−1ı(k)g; k 2 K; g 2 G;

k ´ ı(k 0) = (k 0)−1kk 0; k; k 0 2 K:

K
xx

ı
��

G

G

Representation of (K;G; ı; ´):

✓ (M = ˘k2KMk)x G; ✓ Mk ˜ g = Mk´g.

 ffCrMod(m˙ n) =
∑

k2K

nk ˙m ˜ ı(k) ı

‹

˜

fi

switching + a toll + currency exchange

d The categoryM(K;G; ı; ´) is ✓ braided monoidal;

✓ pre-modular when G and K are finite;

✓ modular if moreover ı is an isomorphism.
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2 Solutions to the YBE

ı

‹



fi

Question: A unified treatment of these braidings?

Answer: “Braid and conquer”

�
Three levels of braidings.

Bonuses:

d new sources of braidings;

d categories with interesting associators.



3 Braided vocabulary

Rank r braided system (in C):

✓ objects V1; V2; : : : ; Vr;

✓ (multi-)braiding ffi;j : Vi ˙ Vj → Vj ˙ Vi,
1 » i » j » r;

✓ compatibility: colored YBEs

ff
j;k
1 ‹ ff

i;k
2 ‹ ff

i;j
1 = ff

i;j
2 ‹ ff

i;k
1 ‹ ff

j;k
2

Vi ˙ Vj ˙ Vk → Vk ˙ Vj ˙ Vi; i » j » k

Vi Vj Vk

←→

Vi Vj Vk



3 Braided vocabulary

Rank r braided system (in C):

✓ objects V1; V2; : : : ; Vr;

✓ (multi-)braiding ffi;j : Vi ˙ Vj → Vj ˙ Vi,
1 » i » j » r;

✓ compatibility: colored YBEs

ff
j;k
1 ‹ ff

i;k
2 ‹ ff

i;j
1 = ff

i;j
2 ‹ ff

i;k
1 ‹ ff

j;k
2

Vi ˙ Vj ˙ Vk → Vk ˙ Vj ˙ Vi; i » j » k

Vi Vj Vk

←→

Vi Vj Vk

Braided object = rank 1 braided system.



3 Braided vocabulary

Braided module over (V ; ff):

✓ object M;

✓ morphisms i : M ˙ Vi → M;
✓ compatibility: for i » j,

j

i

M Vi Vj

= j

i

ffi;j

M Vi Vj



3 Braided vocabulary

Braided module over (V ; ff):

✓ object M;

✓ morphisms i : M ˙ Vi → M;
✓ compatibility: for i » j,

j

i

M Vi Vj

= j

i

ffi;j

M Vi Vj

Categories Mod
(V ;ff)
, Mod(V ;ff), etc.



4 Examples of braided systems

✓ Unital associative algebra (A; —; �)  

ffAss = � ˙ —

in Vectk: ffAss(v ˙ v 0) = 1˙ vv 0

d YBE for ffAss ⇐⇒ the associativity of —.

d Usual A-modules are braided modules over (A; ffAss).
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✓ Unital associative algebra (A; —; �)  

ffAss = � ˙ —

in Vectk: ffAss(v ˙ v 0) = 1˙ vv 0

d YBE for ffAss ⇐⇒ the associativity of —.

d Usual A-modules are braided modules over (A; ffAss).

✓ Counital coass. algebra (C;´; ")  

ffcoAss = "˙´

✓ Shelf (S;�)  

ffSD(a; b) = (b; a � b)

d YBE for ffSD ⇐⇒ the self-distributivity of �.

d 9ff
−1
SD ⇐⇒ (S;�) is a rack.
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✓ Unital Lie algebra (L; [ ]; 1), [v; 1] = [1; v] = 0.

ffLie(v ˙ v
0) = v 0 ˙ v + 1˙ [v; v 0]
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4 Examples of braided systems

✓ Unital Lie algebra (L; [ ]; 1), [v; 1] = [1; v] = 0.

ffLie(v ˙ v
0) = v 0 ˙ v + 1˙ [v; v 0]

d YBE for ffLie ⇐⇒ Leibniz condition for L:

[v; [w;u]] = [[v; w]; u] − [[v; u]; w]

Basic alg. relations are instances of the YBE!

d Usual L-modules are braided modules over (L; ffLie).

It is enough to take a unital Leibniz algebra

(= non-symmetric Lie).



4 Examples of braided systems

✓ F.-d. Hopf algebra H  two rank 2 braided systems

(H;H˜; ff), and a rank 4 one.

d cYBEs ⇐⇒ bialgebra axioms.

d 9(ffi;j)−1 ⇐⇒ H admits an antipode.

d Hopf modules / YD modules / Hopf bimodules are

braided modules.



4 Examples of braided systems

✓ F.-d. Hopf algebra H  two rank 2 braided systems

(H;H˜; ff), and a rank 4 one.

d cYBEs ⇐⇒ bialgebra axioms.

d 9(ffi;j)−1 ⇐⇒ H admits an antipode.

d Hopf modules / YD modules / Hopf bimodules are

braided modules.

✓ Poisson algebra P  a rank 2 braided system (P; P ; ff).



5 Generalized YD modules

Yetter–Drinfel 0d module over a braided system

(C; A;ffA;A; ffC;C; ffC;A):

✓ object M;

✓ (A; ffA;A)-module structure ;

✓ (C ; ffC;C)-comodule structure ‹;

✓ compatibility: actions and coactions can be switched

‹ ‹  = (˙ IdC) ‹ (IdM ˙ffC;A) ‹ (‹ ˙ IdA)

in Vectk: (m ˜ a)(0) ˙ (m ˜ a)(1) =m(0) ˜ ea˙ gm(1)

‹


C

AM

M

=
‹



C

AM

M

ffC;A



5 Generalized YD modules

Yetter–Drinfel 0d module over a braided system

(C; A;ffA;A; ffC;C; ffC;A):

✓ object M;

✓ (A; ffA;A)-module structure ;

✓ (C ; ffC;C)-comodule structure ‹;

✓ compatibility: actions and coactions can be switched

‹ ‹  = (˙ IdC) ‹ (IdM ˙ffC;A) ‹ (‹ ˙ IdA)

in Vectk: (m ˜ a)(0) ˙ (m ˜ a)(1) =m(0) ˜ ea˙ gm(1)

‹


C

AM

M

=
‹



C

AM

M

ffC;A

Category YDCA .

d Relation to entwining structures, distributive laws,

bimodules over a bimonad.
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6 Generalized YD braidings

Theorem (L.-W. 2015): YD braidings generalize to YDCA

Take ✓ symmetric strict monoidal category C;

✓ braided system (C;A; ff);

✓ ı : C → A satisfying some technical condition.

 Functors (YDCA )
ˆr → BrSystr;

“
(Mi; i; ‹i)

”
7→ (Mi; ff

i;j
gY D);

where ff
i;j
gY D = (IdMj ˙i) ‹ (fi ˙ ı) ‹ (IdMi˙‹j) .

ı

‹j

i

fi

Mi Mj

switching + a toll + currency exchange
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1 GYD recover YD

Hopf algebra (H; —; �; ";´; S)  braided system

✓ C = A = H;

✓ ffC;C = ffcoAss, ffA;A = ffAss,
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7 Generalized YD modules: examples

1 GYD recover YD

Hopf algebra (H; —; �; ";´; S)  braided system

✓ C = A = H;

✓ ffC;C = ffcoAss, ffA;A = ffAss,

ffC;A = (IdH˙(— ‹ (—˙ IdH))) ‹ (fi ˙ IdH˙H) ‹ (S ˙ fi ˙ IdH)‹

(fi ˙ IdH˙H) ‹ (IdH˙((´˙ IdH) ‹´));

in Vectk: ffC;A(h˙ h 0) = h
0
(2) ˙ S(h

0
(1))hh

0
(3)

✓ ı = IdH is “good”.

YDCA ←֓ YD
H
H

ffgY D ← ffY D
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7 Generalized YD modules: examples

3 GYD recover reps of crossed modules

Crossed module of groups (K;G; ı; ´)  braided system

✓ C = kK, A = kG;

✓ ffC;C = ffcoAss, ffA;A = ffAss,

ffC;A(k ˙ g) = g ˙ (k ´ g);

✓ ı : C → A is “good”.

YDCA ←֓M(K;G; ı; ´)

ffgY D ← ffCrMod

GYD pave a way to new braidings



8 Crossed modules of shelves

6 Crossed module of shelves:

✓ shelf morphism ı : R → S;
✓ shelf action ´ of S on R by shelf morphisms;

✓ compatibility:

ı(r ´ s) = ı(r) � s; r 2 R; s 2 S;

r ´ ı(r 0) = r � r 0; r; r 0 2 R:

R
xx

ı
��

S

S
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6 Crossed module of shelves:

✓ shelf morphism ı : R → S;
✓ shelf action ´ of S on R by shelf morphisms;

✓ compatibility:

ı(r ´ s) = ı(r) � s; r 2 R; s 2 S;

r ´ ı(r 0) = r � r 0; r; r 0 2 R:

R
xx

ı
��

S

S

A representation of (R;S; ı; ´):

✓ (M = ˘r2RMr)x S;

(m ˜ b) ˜ c = (m ˜ c) ˜ (b � c)

✓ compatibility: Mr ˜ s „ Mr´s.
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✓ ‹0 : M → M ˙ L, (‹0 ˙ IdL) ‹ ‹0 = 0;

✓ compatibility: ‹0(m ˜ n) = ‹0(m) ˜ n.
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Example: Lie algebra (L; [ ])  cr. mod. (L; L; IdL; [ ]),
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5 Crossed module of Lie algebras (L; N; ı; [ ])  

New braided systems:

M(L;N; ı; [ ])ˆr → BrSystr;
“
(Mi; ˜i; (‹0)i)

”
7→ (Mi; ff

i;j
CrModLA);

where ff
i;j
CrModLA(m˙m

0) =m 0 ˙m +m 0
(0) ˙m ˜i ı(m

0
(1)) .

d The braiding ffCrModLA generalizes ffLie.
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 braided system (A = H; C = H; ff) & ı = IdH.

d (k; "; �) 2 YDCA , H = A 2 ZCA or H = C 2 ZCA ,

 two generalized YD structures on k˙ H ∼= H,

 two braidings for H:

ffH(h˙ h
0) = h 0(1) ˙ S(h

0
(2))hh

0
(3);

ff 0H(h˙ h
0) = h 0(2) ˙ hS(h

0
(1))h

0
(3);

Woronowicz braidings!

d A more complicated gYD structure on k

 Hennings braidings.



11 Structure on YDCA

1 Hopf algebra (H; —; �; ";´; S)

 braided system (A = H; C = H; ff);

 ECA : YDCA ˆ Z
C
A → YD

C
A .

Proposition (L.-W. 2015): ZY D : YDCA →֒ Z
C
A

‹

H M HM





11 Structure on YDCA

1 Hopf algebra (H; —; �; ";´; S)

 braided system (A = H; C = H; ff);

 ECA : YDCA ˆ Z
C
A → YD

C
A .

Proposition (L.-W. 2015): ZY D : YDCA →֒ Z
C
A

‹

H M HM



 YDCA ˆ YD
C
A

IdˆZY D
−→ YDCA ˆ Z

C
A

EC
A

−→ YDCA



11 Structure on YDCA

1 Hopf algebra (H; —; �; ";´; S)

 braided system (A = H; C = H; ff);

 ECA : YDCA ˆ Z
C
A → YD

C
A .

Proposition (L.-W. 2015): ZY D : YDCA →֒ Z
C
A

‹

H M HM



 YDCA ˆ YD
C
A

IdˆZY D
−→ YDCA ˆ Z

C
A

EC
A

−→ YDCA
 YDCA has nice categorical features : a tensor

structure extending the classical one for YDHH .



11 Structure on YDCA

1 Hopf algebra (H; —; �; ";´; S)

 braided system (A = H; C = H; ff);

 ECA : YDCA ˆ Z
C
A → YD

C
A .

Proposition (L.-W. 2015): ZY D : YDCA →֒ Z
C
A

‹

H M HM



 YDCA ˆ YD
C
A

IdˆZY D
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structure extending the classical one for YDHH .

3 The same for crossed modules of groups.
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gr˙(m˙m
0) = gr 0(m 0);
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Theorem (L.-W. 2015):

˙ is a non-strict pre-tensor structure, with

¸M;M 0;M 00 : (M ˙M 0)˙M 00 ∼→ M ˙ (M 0 ˙M 00);

(m˙m 0)˙m 00 7→ m ˜ ı(m 00
(1)
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