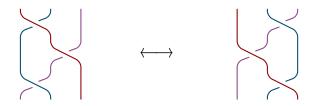
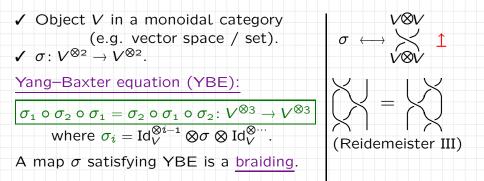
Crossed modules and beyond

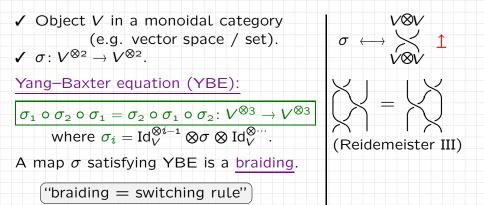
Victoria LEBED, University of Nantes Joint work with Friedrich WAGEMANN



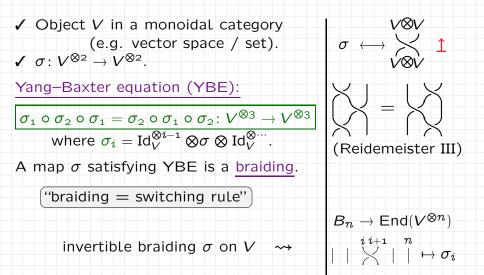
1 Yang–Baxter equation



1 Yang–Baxter equation



1 Yang–Baxter equation



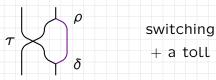
 $| \ | \ imes \ \sigma_i^{-1}$

Yetter-Drinfel'd module over a Hopf algebra H:

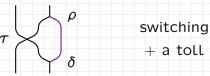
- \checkmark vector space M;
- $\checkmark H \text{-action } \rho \colon m \otimes h \mapsto m * h;$
- ✓ H-coaction δ : $m \mapsto m_{(0)} \otimes m_{(1)}$;
- ✓ compatibility: (actions and coactions can be switched) $(m * h)_{(0)} \otimes (m * h)_{(1)} = m_{(0)} * h_{(2)} \otimes s(h_{(1)})m_{(1)}h_{(3)}$

Yetter-Drinfel'd module over a Hopf algebra H:

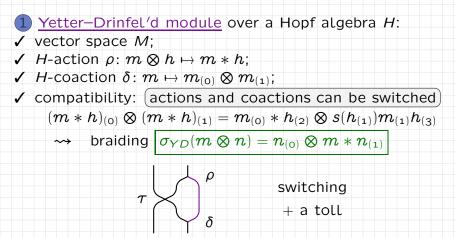
- \checkmark vector space M;
- ✓ *H*-action ρ : $m \otimes h \mapsto m * h$;
- ✓ H-coaction δ : $m \mapsto m_{(o)} \otimes m_{(1)}$;
- ✓ compatibility: (actions and coactions can be switched)
 - $(m*h)_{(0)}\otimes (m*h)_{(1)}=m_{(0)}*h_{(2)}\otimes s(h_{(1)})m_{(1)}h_{(3)}$
 - \rightsquigarrow braiding $\sigma_{YD}(m\otimes n)=n_{(0)}\otimes m*n_{(1)}$



- \checkmark vector space M;
- ✓ *H*-action ρ : $m \otimes h \mapsto m * h$;
- ✓ H-coaction δ : $m \mapsto m_{(0)} \otimes m_{(1)}$;
- compatibility: (actions and coactions can be switched)
 - $(m*h)_{(0)}\otimes (m*h)_{(1)}=m_{(0)}*h_{(2)}\otimes s(h_{(1)})m_{(1)}h_{(3)}$
 - ightarrow braiding $\sigma_{YD}(m\otimes n)=n_{(0)}\otimes m*n_{(1)}$



+ All invertible f.-d. braidings.



+ All invertible f.-d. braidings.

+ \mathcal{YD}_{H}^{H} has (nice categorical features): braided monoidal, and even modular when $H = \Bbbk G$ for a finite group G \rightsquigarrow link and 3-mld invariants.

2 Self-distributive set (= shelf):

✓ set *S*;

✓ <u>self-distributive</u> binary operation ⊲:

 $(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$

2 <u>Self-distributive set</u> (= <u>shelf</u>):

✓ set *S*;

✓ <u>self-distributive</u> binary operation ⊲:

 $(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$

<u>Rack</u>: shelf with all t_b : $a \mapsto a \triangleleft b$ bijective. Quandle: rack with $a \triangleleft a = a$.

2 <u>Self-distributive set</u> (= <u>shelf</u>):

✓ set S;

✓ <u>self-distributive</u> binary operation ⊲:

 $(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$

<u>Rack</u>: shelf with all t_b : $a \mapsto a \triangleleft b$ bijective. Quandle: rack with $a \triangleleft a = a$.

Examples:

+ group with
$$g \triangleleft g' = (g')^{-1}gg'$$
;

rack = "(w) rack and ruin of a group"

2 <u>Self-distributive set</u> (= <u>shelf</u>):

✓ set S;

✓ <u>self-distributive</u> binary operation ⊲:

 $(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$

<u>Rack</u>: shelf with all t_b : $a \mapsto a \triangleleft b$ bijective. Quandle: rack with $a \triangleleft a = a$.

Examples:

+ group with
$$g \triangleleft g' = (g')^{-1}gg'$$
;

rack = "(w) rack and ruin of a group"

+ $\mathbb{Z}[t]$ -module with $a \triangleleft b = ta + (1-t)b$.

2 <u>Self-distributive set</u> (= <u>shelf</u>):

✓ set S;

✓ <u>self-distributive</u> binary operation ⊲:

 $(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$

<u>Rack</u>: shelf with all t_b : $a \mapsto a \triangleleft b$ bijective. Quandle: rack with $a \triangleleft a = a$.

(SD) \iff braiding $\sigma_{SD}(a, b) = (b, a \triangleleft b)$

2 <u>Self-distributive set</u> (= <u>shelf</u>):

✓ set *S*;

✓ <u>self-distributive</u> binary operation ⊲:

 $(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$

<u>Rack</u>: shelf with all t_b : $a \mapsto a \triangleleft b$ bijective. Quandle: rack with $a \triangleleft a = a$.

(SD) \iff braiding $\sigma_{SD}(a, b) = (b, a \triangleleft b)$

Rack axiom \iff Reidemeister II move; Quandle axiom \iff Reidemeister I move.

2 Self-distributive set (= shelf):

✓ set S;

✓ <u>self-distributive</u> binary operation ⊲:

 $(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$

<u>Rack</u>: shelf with all t_b : $a \mapsto a \triangleleft b$ bijective. Quandle: rack with $a \triangleleft a = a$.

(SD) \iff braiding $\sigma_{SD}(a, b) = (b, a \triangleleft b)$

Rack axiom \iff Reidemeister II move;

Quandle axiom \iff Reidemeister I move.

 \leftrightarrow Invariants of braids, links, knotted surfaces & graphs.

- 3 Crossed module of groups:
- ✓ group morphism $\pi: K \to G$;
- ✓ G-action \cdot on K by group automorphisms;
- compatibility:

 $\pi(k \cdot g) = g^{-1}\pi(k)g, \qquad k \in K, \ g \in G,$

 $k \cdot \pi(k') = (k')^{-1}kk', \qquad k, k' \in K.$

- 3 Crossed module of groups:
- ✓ group morphism π : K → G;
- $\checkmark G-action \cdot on K by group automorphisms;$
- compatibility:

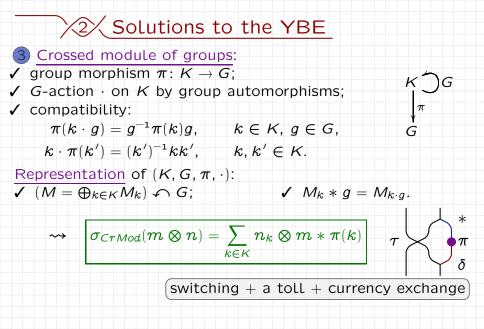
 $\pi(k\cdot g)=g^{-1}\pi(k)g,\qquad k\in {\cal K},\ g\in G,$

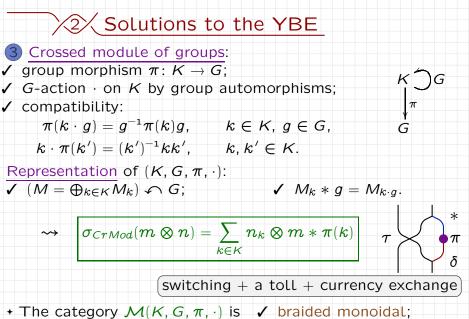
 $k \cdot \pi(k') = (k')^{-1}kk', \qquad k, k' \in K.$

Representation of (K, G, π, \cdot) :

$$\checkmark (M = \bigoplus_{k \in K} M_k) \curvearrowleft G;$$

 $\checkmark M_k * g = M_{k \cdot q}.$



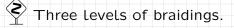


- \checkmark pre-modular when G and K are finite;
- \checkmark modular if moreover π is an isomorphism.

Question: A unified treatment of these braidings?

Question: A unified treatment of these braidings?

Answer: ("Braid and conquer"



Question: A unified treatment of these braidings?

Answer: ("Braid and conquer"

Three levels of braidings.

Bonuses:

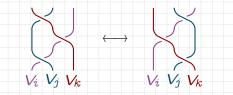
- + new sources of braidings;
- + categories with interesting associators.

 $\begin{array}{c} \begin{array}{c} \text{Rank } r \text{ braided system} \text{ (in } \mathcal{C}\text{):} \\ \hline \checkmark \text{ objects } V_1, V_2, \dots, V_r; \\ \hline \checkmark \text{ (multi-)braiding } \sigma^{i,j} \colon V_i \otimes V_j \to V_j \otimes V_i, \\ 1 \leq i \leq j \leq r; \end{array} \end{array}$

✓ compatibility: <u>colored YBEs</u>

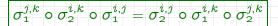
 $\sigma_{\mathtt{i}}^{j,k} \circ \sigma_{\mathtt{2}}^{i,k} \circ \sigma_{\mathtt{i}}^{i,j} = \sigma_{\mathtt{2}}^{i,j} \circ \sigma_{\mathtt{i}}^{i,k} \circ \sigma_{\mathtt{2}}^{j,k}$

$$\mathcal{V}_i \otimes \mathcal{V}_j \otimes \mathcal{V}_k o \mathcal{V}_k \otimes \mathcal{V}_j \otimes \mathcal{V}_i, \ i \leq j \leq k$$

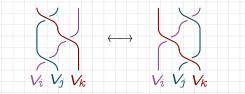


 $\begin{array}{c} \begin{array}{c} \text{Rank } r \text{ braided system} \text{ (in } \mathcal{C}): \\ \hline \checkmark \text{ objects } V_1, V_2, \dots, V_r; \\ \hline \checkmark \text{ (multi-)braiding } \sigma^{i,j}: V_i \otimes V_j \rightarrow V_j \otimes V_i, \\ 1 \leq i \leq j \leq r; \end{array} \end{array}$

✓ compatibility: <u>colored YBEs</u>



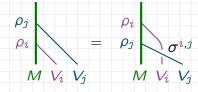
$$V_i \otimes V_j \otimes V_k o V_k \otimes V_j \otimes V_i, \ oldsymbol{i} \leq j \leq k$$



Braided object = rank 1 braided system.

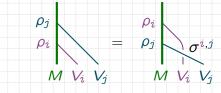
<u>Braided module</u> over $(\overline{V}; \overline{\sigma})$:

- ✓ object M;
- \checkmark morphisms $\rho_i \colon M \otimes V_i \to M$;
- ✓ compatibility: for i ≤ j,



<u>Braided module</u> over $(\overline{V}; \overline{\sigma})$:

- ✓ object M;
- ✓ morphisms ρ_i : $M \otimes V_i \to M$;
- ✓ compatibility: for i ≤ j,



Categories $Mod_{(\overline{V};\overline{\sigma})}$, $Mod^{(\overline{V};\overline{\sigma})}$, etc.

✓ Unital associative algebra $(A, \mu, \nu) \rightsquigarrow$

 $\sigma_{Ass} = \nu \otimes \mu$

in Vect_k: $\sigma_{Ass}(v \otimes v') = \mathbf{1} \otimes vv'$

- + YBE for $\sigma_{Ass} \iff$ the associativity of μ .
- + Usual A-modules are braided modules over $(A; \sigma_{Ass})$.

✓ Unital associative algebra $(A, \mu, \nu) \rightsquigarrow$

 $\sigma_{Ass} = \overline{
u \otimes \mu}$

in Vect_k: $\sigma_{Ass}(v \otimes v') = 1 \otimes vv'$

- + YBE for $\sigma_{Ass} \iff$ the associativity of μ .
- + Usual A-modules are braided modules over $(A; \sigma_{Ass})$.
- ✓ Counital coass. algebra $(C, \Delta, \varepsilon) \rightsquigarrow$

 $\sigma_{coAss} = arepsilon \otimes arDelta$

✓ Unital associative algebra $(A, \mu, \nu) \rightsquigarrow$

 $\sigma_{{\scriptscriptstyle ASS}} =
u \otimes \mu$

in $\operatorname{Vect}_{\Bbbk}$: $\sigma_{\operatorname{{\mathcal{A}SS}}}(\upsilon\otimes\upsilon')=\mathtt{1}\otimes\upsilon\upsilon'$

- + YBE for $\sigma_{Ass} \iff$ the associativity of μ .
- + Usual A-modules are braided modules over $(A; \sigma_{Ass})$.
- ✓ Counital coass. algebra $(C, \Delta, \varepsilon) \rightsquigarrow$

 $\sigma_{coAss} = arepsilon \otimes arDelta$

✓ Shelf $(S, \triangleleft) \rightsquigarrow$

 $\sigma_{SD}(a, b) = (b, a \lhd b)$

- + YBE for $\sigma_{SD} \iff$ the self-distributivity of \lhd .
- + $\exists \sigma_{SD}^{-1} \iff (S, \triangleleft)$ is a rack.

✓ Unital Lie algebra (L, [], 1), [v, 1] = [1, v] = 0.

$$\sigma_{\textit{Lie}}(\upsilon \otimes \upsilon') = \upsilon' \otimes \upsilon + \mathtt{1} \otimes [\upsilon, \upsilon']$$

✓ Unital Lie algebra (L, [], 1), [v, 1] = [1, v] = 0.

$$\sigma_{\textit{Lie}}(v \otimes v') = v' \otimes v + \mathtt{1} \otimes [v, v']$$

+ YBE for $\sigma_{Lie} \iff$ Leibniz condition for L:

$$[v, [w, u]] = [[v, w], u] - [[v, u], w]$$

Basic alg. relations are instances of the YBE!

✓ Unital Lie algebra (L, [], 1), [v, 1] = [1, v] = 0.

$$\sigma_{\textit{Lie}}(v \otimes v') = v' \otimes v + \mathtt{1} \otimes [v, v']$$

+ YBE for $\sigma_{Lie} \iff$ Leibniz condition for L:

$$[v, [w, u]] = [[v, w], u] - [[v, u], w]$$

Basic alg. relations are instances of the YBE!

+ Usual L-modules are braided modules over $(L; \sigma_{Lie})$.

✓ Unital Lie algebra (L, [], 1), [v, 1] = [1, v] = 0.

$$\sigma_{\textit{Lie}}(v \otimes v') = v' \otimes v + \mathtt{1} \otimes [v, v']$$

+ YBE for $\sigma_{Lie} \iff$ Leibniz condition for L:

$$[v, [w, u]] = [[v, w], u] - [[v, u], w]$$

Basic alg. relations are instances of the YBE!

+ Usual L-modules are braided modules over $(L; \sigma_{Lie})$.

It is enough to take a unital Leibniz algebra (= non-symmetric Lie).

✓ F.-d. Hopf algebra $H \rightarrow$ two rank 2 braided systems $(H, H^*; \overline{\sigma})$, and a rank 4 one.

- + cYBEs \iff bialgebra axioms.
- + $\exists (\sigma^{i,j})^{-1} \iff H$ admits an antipode.

+ Hopf modules / YD modules / Hopf bimodules are braided modules.

✓ F.-d. Hopf algebra $H \rightarrow$ two rank 2 braided systems $(H, H^*; \overline{\sigma})$, and a rank 4 one.

- + cYBEs \iff bialgebra axioms.
- + $\exists (\sigma^{i,j})^{-1} \iff H$ admits an antipode.

+ Hopf modules / YD modules / Hopf bimodules are braided modules.

✓ Poisson algebra $P \rightarrow a$ rank 2 braided system $(P, P; \overline{\sigma})$.

5 Generalized YD modules

Yetter-Drinfel'd module over a braided system

MC

MA A

$$(C, A; \sigma_{A,A}, \sigma_{C,C}, \sigma_{C,A})$$
:

- ✓ object M;
- ✓ ($A; \sigma_{A,A}$)-module structure ρ ;
- ✓ $(C; \sigma_{C,C})$ -comodule structure δ ;
- compatibility: (actions and coactions can be switched)

 $\delta \circ \rho = (\rho \otimes \mathrm{Id}_C) \circ (\mathrm{Id}_M \otimes \sigma_{C,A}) \circ (\delta \otimes \mathrm{Id}_A)$

in $\operatorname{Vect}_{\Bbbk}$: $(m*a)_{(0)}\otimes (m*a)_{(1)}=m_{(0)}*\widetilde{a}\otimes \widetilde{m_{(1)}}$

 $\sigma_{C,A}$

Δ

5 Generalized YD modules

$$(C, A; \sigma_{A,A}, \sigma_{C,C}, \sigma_{C,A})$$
:

- ✓ object M;
- ✓ (A; $\sigma_{A,A}$)-module structure ρ ;
- ✓ $(C; \sigma_{C,C})$ -comodule structure δ ;
- compatibility: (actions and coactions can be switched)

 $\delta \circ \rho = (\rho \otimes \mathrm{Id}_{C}) \circ (\mathrm{Id}_{M} \otimes \sigma_{C,A}) \circ (\delta \otimes \mathrm{Id}_{A})$

in $\operatorname{Vect}_{\Bbbk}$: $(m*a)_{(0)}\otimes (m*a)_{(1)}=m_{(0)}*\widetilde{a}\otimes \widetilde{m_{(1)}}$

 $= \int_{\delta}^{\rho} \sigma_{C,A}$

 $\begin{array}{ccc} MA & MA \\ \text{Category } \mathcal{YD}_A^C. \end{array}$

MC

+ Relation to entwining structures, distributive laws, bimodules over a bimonad.

6 Generalized YD braidings

Theorem (L.-W. 2015): YD braidings generalize to \mathcal{YD}_A^C

6 Generalized YD braidings

Theorem (L.-W. 2015): YD braidings generalize to \mathcal{YD}_{A}^{C}

- Take \checkmark symmetric strict monoidal category C; \checkmark braided system ($C, A; \overline{\sigma}$);
- ✓ $\pi: C \to A$ satisfying some technical condition.

6 Generalized YD braidings

Theorem (L.-W. 2015): YD braidings generalize to \mathcal{YD}_{A}^{C}

- Take \checkmark symmetric strict monoidal category C; \checkmark braided system ($C, A; \overline{\sigma}$);
- ✓ $\pi: C \to A$ satisfying some technical condition.

 \rightsquigarrow Functors $(\mathcal{YD}_{\mathcal{A}}^{\mathcal{C}})^{ imes r}
ightarrow \mathbf{BrSyst}_{r}$,

 $\left((M_i, \rho_i, \delta_i)\right) \mapsto (M_i; \sigma^{i,j}_{gYD}),$

where $\sigma_{gYD}^{i,j} = (\mathrm{Id}_{M_j} \otimes \rho_i) \circ (\tau \otimes \pi) \circ (\mathrm{Id}_{M_i} \otimes \delta_j)$.

switching + a toll + currency exchange

(1) GYD recover YD

Hopf algebra $(H, \mu, \nu, \varepsilon, \Delta, S) \rightsquigarrow$ braided system

- $\checkmark C = A = H;$
- $\checkmark \quad \sigma_{C,C} = \sigma_{coAss}, \qquad \sigma_{A,A} = \sigma_{Ass},$

1 GYD recover YD

Hopf algebra $(H, \mu, \nu, \varepsilon, \Delta, S) \rightsquigarrow$ braided system

- $\checkmark C = A = H;$
- $\checkmark \quad \sigma_{C,C} = \sigma_{coAss}, \qquad \sigma_{A,A} = \sigma_{Ass},$

$$\begin{split} \sigma_{C,A} &= (\mathrm{Id}_{H} \otimes (\mu \circ (\mu \otimes \mathrm{Id}_{H}))) \circ (\tau \otimes \mathrm{Id}_{H \otimes H}) \circ (S \otimes \tau \otimes \mathrm{Id}_{H}) \circ \\ & (\tau \otimes \mathrm{Id}_{H \otimes H}) \circ (\mathrm{Id}_{H} \otimes ((\Delta \otimes \mathrm{Id}_{H}) \circ \Delta)); \\ & \text{in } \mathbf{Vect}_{\Bbbk} : \ \sigma_{C,A}(h \otimes h') = h'_{(2)} \otimes S(h'_{(1)})hh'_{(3)} \end{split}$$

1 GYD recover YD

Hopf algebra $(H, \mu, \nu, \varepsilon, \Delta, S) \rightsquigarrow$ braided system

- $\checkmark C = A = H;$
- $\checkmark \quad \sigma_{C,C} = \sigma_{coAss}, \qquad \sigma_{A,A} = \sigma_{Ass},$

$$\begin{split} \sigma_{C,A} &= (\mathrm{Id}_{H} \otimes (\mu \circ (\mu \otimes \mathrm{Id}_{H}))) \circ (\tau \otimes \mathrm{Id}_{H \otimes H}) \circ (S \otimes \tau \otimes \mathrm{Id}_{H}) \circ \\ & (\tau \otimes \mathrm{Id}_{H \otimes H}) \circ (\mathrm{Id}_{H} \otimes ((\Delta \otimes \mathrm{Id}_{H}) \circ \Delta)); \\ & \text{in } \mathbf{Vect}_{\Bbbk}: \ \sigma_{C,A}(h \otimes h') = h'_{(2)} \otimes S(h'_{(1)})hh'_{(3)} \end{split}$$

 $\checkmark \pi = \mathrm{Id}_H$ is "good".

1 GYD recover YD

Hopf algebra $(H, \mu, \nu, \varepsilon, \Delta, S) \rightsquigarrow$ braided system

- $\checkmark C = A = H;$
- $\checkmark \quad \sigma_{C,C} = \sigma_{coAss}, \qquad \sigma_{A,A} = \sigma_{Ass},$
- $$\begin{split} \sigma_{C,A} &= (\mathrm{Id}_{H} \otimes (\mu \circ (\mu \otimes \mathrm{Id}_{H}))) \circ (\tau \otimes \mathrm{Id}_{H \otimes H}) \circ (S \otimes \tau \otimes \mathrm{Id}_{H}) \circ \\ & (\tau \otimes \mathrm{Id}_{H \otimes H}) \circ (\mathrm{Id}_{H} \otimes ((\Delta \otimes \mathrm{Id}_{H}) \circ \Delta)); \\ & \text{in } \mathbf{Vect}_{\Bbbk}: \ \sigma_{C,A}(h \otimes h') = h'_{(2)} \otimes S(h'_{(1)})hh'_{(3)} \end{split}$$
- $\checkmark \pi = \mathrm{Id}_H$ is "good".

$$\mathcal{YD}^C_A \leftrightarrow \mathcal{YD}^H_H$$

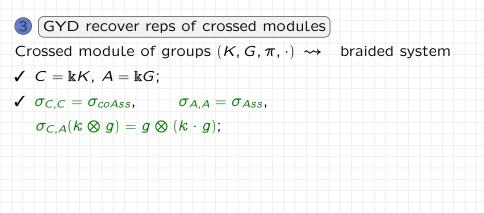
 $\sigma_{aYD} \leftarrow \sigma_{YD}$

(GYD recover reps of crossed modules)

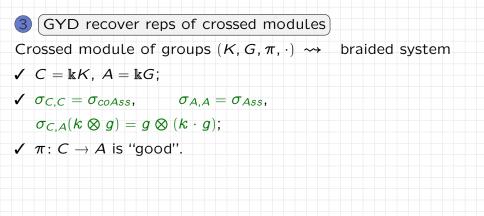
Crossed module of groups $(K, G, \pi, \cdot) \rightsquigarrow$ braided system

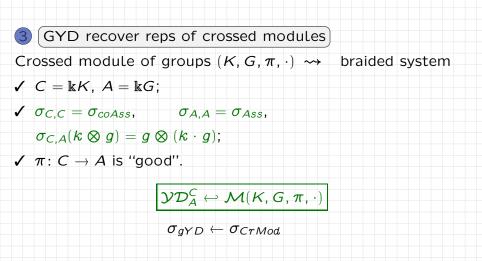
$$\checkmark C = \Bbbk K, \ A = \Bbbk G;$$

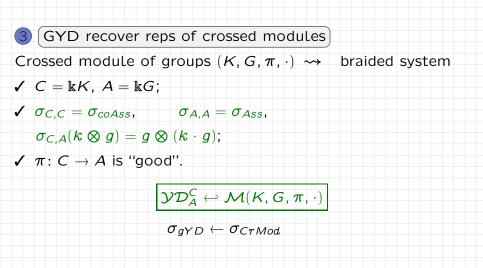
 $\checkmark \quad \sigma_{C,C} = \sigma_{coAss}, \qquad \sigma_{A,A} = \sigma_{Ass},$



Contraction of the second seco







GYD pave a way to new braidings)

- 6 Crossed module of shelves:
- ✓ shelf morphism π : R → S;
- \checkmark shelf action \cdot of S on R by shelf morphisms;
- compatibility:

 $\pi(r \cdot s) = \pi(r) \lhd s, \qquad r \in R, \ s \in S,$

 $r\cdot \pi(r')=r \lhd r', \qquad r,r'\in R.$

- 6 Crossed module of shelves:
- ✓ shelf morphism π : R → S;
- \checkmark shelf action \cdot of S on R by shelf morphisms;
- compatibility:

 $\pi(r \cdot s) = \pi(r) \lhd s, \qquad r \in R, \ s \in S,$

 $r\cdot \pi(r')=r \lhd r'$, $r,r'\in R$.

A representation of (R, S, π, \cdot) :

$$\checkmark (M = \bigoplus_{r \in R} M_r) \curvearrowleft S; (m * b) * c = (m * c) * (b \lhd c)$$

✓ compatibility: $M_r * s \subseteq M_{r \cdot s}$.

Category $\mathcal{M}(R, S, \pi, \cdot)$.

- 6 Crossed module of shelves:
- ✓ shelf morphism π : R → S;
- \checkmark shelf action \cdot of S on R by shelf morphisms;
- compatibility:

 $\pi(r \cdot s) = \pi(r) \triangleleft s, \qquad r \in R, \ s \in S,$

 $r\cdot \pi(r')=r \lhd r', \qquad r,r'\in R.$

A representation of (R, S, π, \cdot) :

$$(M = \bigoplus_{r \in R} M_r) \curvearrowleft S;$$
$$(m * b) * c = (m * c) * (b \triangleleft$$

✓ compatibility: $M_r * s \subseteq M_{r \cdot s}$.

Category $\mathcal{M}(R, S, \pi, \cdot)$.

Example: Shelf $(S, \triangleleft) \rightarrow$

crossed module of shelves $(S, S, Id_S, \triangleleft)$, with a representation $S, s * s' = s \triangleleft s', S_s = \{s\}$.

C)

- 6 Crossed module of shelves:
- ✓ shelf morphism π : R → S;
- \checkmark shelf action \cdot of S on R by shelf morphisms;
- compatibility:

 $\pi(r \cdot s) = \pi(r) \lhd s, \qquad r \in R, \ s \in S,$

 $r\cdot \pi(r')=r \lhd r', \qquad r,r'\in R.$

A representation of (R, S, π, \cdot) :

$$(M = \bigoplus_{r \in R} M_r) \curvearrowleft S;$$
$$(m * b) * c = (m * c) * (b \triangleleft$$

✓ compatibility: $M_r * s \subseteq M_{r \cdot s}$.

Category $\mathcal{M}(R, S, \pi, \cdot)$.

Example: Shelf $(S, \triangleleft) \rightsquigarrow$

crossed module of shelves $(S, S, Id_S, \triangleleft)$,

with a representation S, $s * s' = s \triangleleft s'$, $S_s = \{s\}$.

C)

Example: Crossed module of groups $(K, G, \pi, \cdot) \rightsquigarrow \mathcal{M}(K, G, \pi, \cdot) \hookrightarrow \mathcal{M}(Conj(K), Conj(G), \pi, \cdot).$

6 Crossed module of shelves $(R, S, \pi, \cdot) \rightsquigarrow$ br. system \checkmark components: C = R, A = S; \checkmark braiding:

 $\sigma_{C,C} = \sigma_{coAss} \colon r \otimes r' \mapsto r' \otimes r',$ $\sigma_{A,A} = \sigma_{SD} \colon s \otimes s' \mapsto s' \otimes (s \triangleleft s'),$ $\sigma_{C,A} \colon r \otimes s \mapsto s \otimes (r \cdot s);$ $\checkmark \pi \colon R \to S \text{ is "good".}$

6 Crossed module of shelves $(R, S, \pi, \cdot) \rightsquigarrow$ br. system \checkmark components: C = R, A = S; \checkmark braiding:

 $\sigma_{C,C} = \sigma_{coAss} \colon r \otimes r' \mapsto r' \otimes r',$ $\sigma_{A,A} = \sigma_{SD} \colon s \otimes s' \mapsto s' \otimes (s \triangleleft s'),$ $\sigma_{C,A} \colon r \otimes s \mapsto s \otimes (r \cdot s);$

✓ π : $R \rightarrow S$ is "good".

 $\mathcal{YD}_{\mathcal{A}}^{\mathcal{C}} \hookrightarrow \mathcal{M}(\mathcal{R}, \mathcal{S}, \pi, \cdot)$

6 Crossed module of shelves $(R, S, \pi, \cdot) \rightsquigarrow$ br. system \checkmark components: C = R, A = S; \checkmark braiding:

 $\begin{aligned} \sigma_{C,C} &= \sigma_{coAss} \colon r \otimes r' \mapsto r' \otimes r', \\ \sigma_{A,A} &= \sigma_{SD} \colon s \otimes s' \mapsto s' \otimes (s \triangleleft s'), \end{aligned}$

 $\sigma_{C,A}$: $r \otimes s \mapsto s \otimes (r \cdot s)$;

✓ π : $R \rightarrow S$ is "good".

 $\mathcal{YD}_{\mathcal{A}}^{\mathcal{C}} \hookrightarrow \mathcal{M}(\mathcal{R}, \mathcal{S}, \pi, \cdot)$

→ New braided systems:

 $\mathcal{M}(\mathsf{R}, \mathsf{S}, \pi, \cdot)^{ imes r} o \mathsf{BrSyst}_r$,

 $((M_i, *_i, gr_i)) \mapsto (M_i; \sigma^{i,j}_{CrModSh}),$

where $\left| \sigma^{i,j}_{\mathit{CrModSh}}(m \otimes n) = n \otimes m *_i \pi(gr_j(n))
ight|.$

6 Crossed module of shelves (R, S, π, ·) → br. system
✓ components: C = R, A = S;
✓ braiding:

$$\begin{split} \sigma_{C,C} &= \sigma_{coAss} \colon r \otimes r' \mapsto r' \otimes r', \\ \sigma_{A,A} &= \sigma_{SD} \colon s \otimes s' \mapsto s' \otimes (s \triangleleft s'), \end{split}$$

 $\sigma_{C,A}$: $r \otimes s \mapsto s \otimes (r \cdot s)$;

✓ π : $R \rightarrow S$ is "good".

 $\mathcal{YD}_{\mathcal{A}}^{\mathcal{C}} \hookrightarrow \mathcal{M}(\mathcal{R}, \mathcal{S}, \pi, \cdot)$

 \rightsquigarrow New braided systems:

 $\mathcal{M}(\mathsf{R}, \mathsf{S}, \pi, \cdot)^{ imes r} o \mathsf{BrSyst}_r$,

 $((M_i, *_i, gr_i)) \mapsto (M_i; \sigma^{i,j}_{CrModSh}),$

where $\left| \sigma^{i,j}_{\mathit{CrModSh}}(m \otimes n) = n \otimes m *_i \pi(gr_j(n))
ight|.$

+ The braiding $\sigma_{CrModSh}$ generalizes σ_{SD}

6 Crossed module of shelves $(R, S, \pi, \cdot) \rightsquigarrow$ br. system \checkmark components: C = R, A = S; \checkmark braiding:

$$\begin{split} \sigma_{C,C} &= \sigma_{coAss} \colon r \otimes r' \mapsto r' \otimes r', \\ \sigma_{A,A} &= \sigma_{SD} \colon s \otimes s' \mapsto s' \otimes (s \triangleleft s'), \end{split}$$

 $\sigma_{C,A}$: $r \otimes s \mapsto s \otimes (r \cdot s)$;

✓ π : $R \rightarrow S$ is "good".

 $\mathcal{YD}_{\mathcal{A}}^{\mathcal{C}} \hookrightarrow \mathcal{M}(\mathcal{R}, \mathcal{S}, \pi, \cdot)$

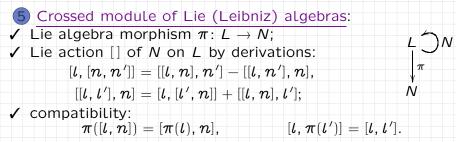
 \rightsquigarrow New braided systems:

 $\mathcal{M}(\mathsf{R}, \mathsf{S}, \pi, \cdot)^{ imes r} o \mathsf{BrSyst}_r$,

$$((M_i, *_i, gr_i)) \mapsto (M_i; \sigma^{i,j}_{CrModSh})$$

where $\left| \sigma^{i,j}_{\mathit{CrModSh}}(m \otimes n) = n \otimes m *_i \pi(gr_j(n))
ight|.$

+ The braiding $\sigma_{CrModSh}$ generalizes σ_{SD} and σ_{CrMod} .



5 Crossed module of Lie (Leibniz) algebras: ✓ Lie algebra morphism $\pi: L \to N$; \checkmark Lie action [] of N on L by derivations: [l, [n, n']] = [[l, n], n'] - [[l, n'], n],[[l, l'], n] = [l, [l', n]] + [[l, n], l'];✓ compatibility: $\pi([l, n]) = [\pi(l), n], \qquad [l, \pi(l')] = [l, l'].$ A representation of $(L, N, \pi, [])$: $\checkmark M \curvearrowleft N$: $\checkmark \delta_0: M \to M \otimes L$, $(\delta_0 \otimes \mathrm{Id}_I) \circ \delta_0 = 0;$ ✓ compatibility: $\delta_0(m * n) = \delta_0(m) * n$. Category $\mathcal{M}(L, N, \pi, [])$.

(5) Crossed module of Lie (Leibniz) algebras: ✓ Lie algebra morphism $\pi: L \to N$; \checkmark Lie action [] of N on L by derivations: [l, [n, n']] = [[l, n], n'] - [[l, n'], n],[[l, l'], n] = [l, [l', n]] + [[l, n], l'];✓ compatibility: $\pi([l, n]) = [\pi(l), n], \qquad [l, \pi(l')] = [l, l'].$ A representation of $(L, N, \pi, [])$: $\checkmark M \curvearrowleft N$: $\checkmark \delta_0: M \to M \otimes L$, $(\delta_0 \otimes \mathrm{Id}_I) \circ \delta_0 = 0;$ ✓ compatibility: $\delta_0(m * n) = \delta_0(m) * n$. Category $\mathcal{M}(L, N, \pi, [])$. **Example:** Lie algebra $(L, []) \rightarrow cr. mod. (L, L, Id_L, []),$ with a representation $L^+ = L \oplus k_1$, $l * l' = [l, l'], \quad 1 * l = 0,$ $\delta_{\mathsf{O}}(l) = \mathbf{1} * l, \quad \delta_{\mathsf{O}}(\mathbf{1}) = \mathbf{0}.$

5 Crossed module of Lie algebras $(L, N, \pi, []) \rightsquigarrow$ braided system

✓ components: $C = L^+$, $A = N^+$;

5 Crossed module of Lie algebras $(L, N, \pi, []) \rightsquigarrow$ braided system

- ✓ components: $C = L^+$, $A = N^+$;
- ✓ braiding:

 $\sigma_{C,C} = \sigma_{coAss}$: 1 \otimes *l* \mapsto 1 \otimes *l* + *l* \otimes 1, 1 \otimes 1 \mapsto 1 \otimes 1, *l* \otimes *l'*, *l* \otimes 1 \mapsto 0, $\sigma_{A,A} = \sigma_{Lie}$: $n \otimes n' \mapsto n' \otimes n + 1 \otimes [n, n'],$ $\sigma_{C,A}$: *l* \otimes $n \mapsto n \otimes l + 1 \otimes [l, n],$ 1 \otimes $n \mapsto n \otimes 1,$ *l* \otimes 1 \mapsto 1 \otimes *l*, 1 \otimes 1 \mapsto 1 \otimes 1.

5 Crossed module of Lie algebras $(L, N, \pi, []) \rightsquigarrow$ braided system

- ✓ components: $C = L^+$, $A = N^+$;
- ✓ braiding:

 $\sigma_{C,C} = \sigma_{coAss} : 1 \otimes l \mapsto 1 \otimes l + l \otimes 1,$ $1 \otimes 1 \mapsto 1 \otimes 1,$ $l \otimes l', l \otimes 1 \mapsto 0,$ $\sigma_{A,A} = \sigma_{Lie} : n \otimes n' \mapsto n' \otimes n + 1 \otimes [n, n'],$ $\sigma_{C,A} : l \otimes n \mapsto n \otimes l + 1 \otimes [l, n],$ $1 \otimes n \mapsto n \otimes 1, \quad l \otimes 1 \mapsto 1 \otimes l,$ $1 \otimes 1 \mapsto 1 \otimes 1.$

✓ $\pi: L \to N$ is "good".

5 Crossed module of Lie algebras $(L, N, \pi, []) \rightsquigarrow$ braided system

- ✓ components: $C = L^+$, $A = N^+$;
- ✓ braiding:

 $\sigma_{C,C} = \sigma_{coAss}$: 1 \otimes *l* \mapsto 1 \otimes *l* + *l* \otimes 1, 1 \otimes 1 \mapsto 1 \otimes 1, *l* \otimes *l'*, *l* \otimes 1 \mapsto 0, $\sigma_{A,A} = \sigma_{Lie}$: $n \otimes n' \mapsto n' \otimes n + 1 \otimes [n, n']$, $\sigma_{C,A}$: *l* \otimes $n \mapsto n \otimes l + 1 \otimes [l, n]$, 1 \otimes $n \mapsto n \otimes 1$, *l* \otimes 1 \mapsto 1 \otimes *l*, 1 \otimes 1 \mapsto 1 \otimes 1.

 $\checkmark \pi \colon L o N$ is "good".

 $\mathcal{YD}_{A}^{C} \leftrightarrow \mathcal{M}(L, N, \pi, [])$

5 Crossed module of Lie algebras (L, N, π , []) \rightsquigarrow

New braided systems:

 $\mathcal{M}(L, \mathit{N}, \pi, [])^{ imes r} o \mathsf{BrSyst}_r,$

 $((M_i, *_i, (\delta_0)_i)) \mapsto (M_i; \sigma^{i,j}_{CrModLA}),$

where $\left| \sigma^{i,j}_{\mathit{CrModLA}}(m \otimes m') = m' \otimes m + m'_{(\mathrm{o})} \otimes m *_i \pi(m'_{(\mathrm{1})})
ight|.$

5 Crossed module of Lie algebras (L, N, π , []) \rightsquigarrow

New braided systems:

$$\mathcal{M}(L, \mathit{N}, \pi, [])^{ imes r} o \mathsf{BrSyst}_r,$$

$$((M_i, *_i, (\delta_0)_i)) \mapsto (M_i; \sigma^{i,j}_{CrModLA}),$$

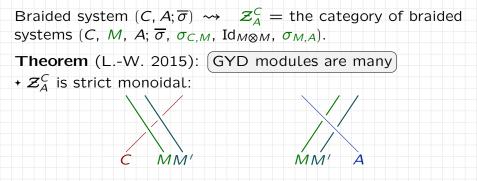
where $\left| \sigma^{i,j}_{\mathit{CrModLA}}(m \otimes m') = m' \otimes m + m'_{(\mathsf{o})} \otimes m *_i \pi(m'_{(1)})
ight|.$

+ The braiding $\sigma_{CrModLA}$ generalizes σ_{Lie} .

10/ Categorical center

Braided system $(C, A; \overline{\sigma}) \rightsquigarrow \mathcal{Z}_{A}^{C} =$ the category of braided systems $(C, M, A; \overline{\sigma}, \sigma_{C,M}, \operatorname{Id}_{M \otimes M}, \sigma_{M,A})$.

10 Categorical center



10 Categorical center

Braided system $(C, A; \overline{\sigma}) \rightsquigarrow \mathcal{Z}_{A}^{C} =$ the category of braided systems $(C, M, A; \overline{\sigma}, \sigma_{C,M}, \operatorname{Id}_{M\otimes M}, \sigma_{M,A})$.

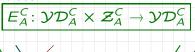
Theorem (L.-W. 2015): GYD modules are many $+ Z_{4}^{C}$ is strict monoidal:

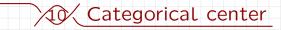
+ Z_A^C contains $(A, \sigma_{C,A}, \sigma_{A,A})$, $(C, \sigma_{C,C}, \sigma_{C,A})$, and all their mixed tensor products.

10 Categorical center

Braided system $(C, A; \overline{\sigma}) \rightsquigarrow Z_A^C =$ the category of braided systems $(C, M, A; \overline{\sigma}, \sigma_{C,M}, \operatorname{Id}_{M\otimes M}, \sigma_{M,A})$. **Theorem** (L.-W. 2015): GYD modules are many + Z_A^C is strict monoidal: + Z_A^C contains $(A, \sigma_{C,A}, \sigma_{A,A})$, $(C, \sigma_{C,C}, \sigma_{C,A})$, and all their

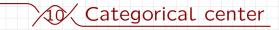
mixed tensor products.





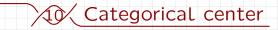
$E_A^C \colon \mathcal{YD}_A^C \times \mathcal{Z}_A^C o \mathcal{YD}_A^C$

Example: 1 Hopf algebra $(H, \mu, \nu, \varepsilon, \Delta, S)$ \rightsquigarrow braided system $(A = H, C = H; \overline{\sigma}) \& \pi = \mathrm{Id}_H.$



$E_A^C \colon \mathcal{YD}_A^C \times \mathcal{Z}_A^C o \mathcal{YD}_A^C$

Example: 1 Hopf algebra $(H, \mu, \nu, \varepsilon, \Delta, S)$ \leftrightarrow braided system $(A = H, C = H; \overline{\sigma}) \& \pi = \mathrm{Id}_{H}$. $+ (\Bbbk, \varepsilon, \nu) \in \mathcal{YD}_{A}^{C}, \quad H = A \in \mathcal{Z}_{A}^{C} \text{ or } H = C \in \mathcal{Z}_{A}^{C},$



$E_A^C \colon \mathcal{YD}_A^C \times \mathcal{Z}_A^C o \mathcal{YD}_A^C$

Example: 1 Hopf algebra $(H, \mu, \nu, \varepsilon, \Delta, S)$ \rightarrow braided system $(A = H, C = H; \overline{\sigma}) \& \pi = \mathrm{Id}_{H}$. $+ (\Bbbk, \varepsilon, \nu) \in \mathcal{YD}_{A}^{C}, \quad H = A \in \mathcal{Z}_{A}^{C} \text{ or } H = C \in \mathcal{Z}_{A}^{C},$ \rightarrow two generalized YD structures on $\Bbbk \otimes H \cong H$,

10 Categorical center

$E_A^C \colon \mathcal{YD}_A^C \times \mathcal{Z}_A^C o \mathcal{YD}_A^C$

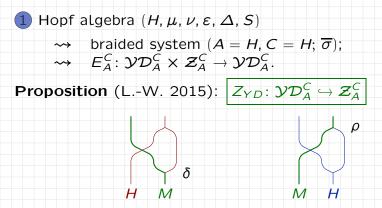
Example: Hopf algebra $(H, \mu, \nu, \varepsilon, \Delta, S)$ \rightarrow braided system $(A = H, C = H; \overline{\sigma}) \& \pi = \mathrm{Id}_{H}$. + $(\Bbbk, \varepsilon, \nu) \in \mathcal{YD}_{A}^{C}$, $H = A \in \mathcal{Z}_{A}^{C}$ or $H = C \in \mathcal{Z}_{A}^{C}$, \rightarrow two generalized YD structures on $\Bbbk \otimes H \cong H$, \rightarrow two braidings for H: $\sigma_{H}(h \otimes h') = h'_{(1)} \otimes S(h'_{(2)})hh'_{(3)}$, $\sigma'_{H}(h \otimes h') = h'_{(2)} \otimes hS(h'_{(1)})h'_{(3)}$; Woronowicz braidings!

10 Categorical center

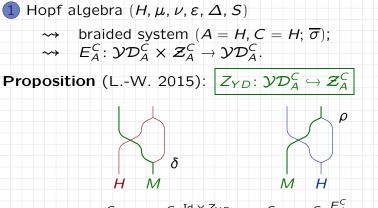
$E_A^C \colon \mathcal{YD}_A^C \times \mathcal{Z}_A^C o \mathcal{YD}_A^C$

Example: Hopf algebra $(H, \mu, \nu, \varepsilon, \Delta, S)$ \rightarrow braided system $(A = H, C = H; \overline{\sigma}) \& \pi = \mathrm{Id}_{H}$. + $(\Bbbk, \varepsilon, \nu) \in \mathcal{YD}_{A}^{C}$, $H = A \in \mathcal{Z}_{A}^{C}$ or $H = C \in \mathcal{Z}_{A}^{C}$, \rightarrow two generalized YD structures on $\Bbbk \otimes H \cong H$, \rightarrow two braidings for H: $\sigma_{H}(h \otimes h') = h'_{(1)} \otimes S(h'_{(2)})hh'_{(3)}$, $\sigma'_{H}(h \otimes h') = h'_{(2)} \otimes hS(h'_{(1)})h'_{(3)}$; Woronowicz braidings!

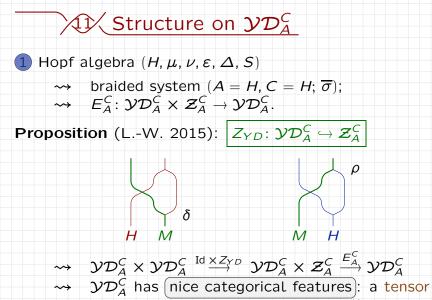
- + A more complicated gYD structure on \Bbbk
 - → Hennings braidings.



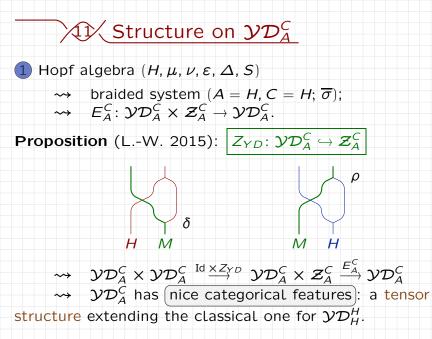
 \mathcal{I} Structure on \mathcal{YD}_A^C



 $\rightsquigarrow \quad \mathcal{YD}_{A}^{C} \times \mathcal{YD}_{A}^{C} \stackrel{\mathrm{Id}}{\to} \overset{\times Z_{YD}}{\to} \mathcal{YD}_{A}^{C} \times \mathcal{Z}_{A}^{C} \stackrel{E_{A}^{C}}{\to} \mathcal{YD}_{A}^{C}$



structure extending the classical one for \mathcal{YD}_{H}^{H} .



The same for crossed modules of groups.

\mathcal{V} Structure on \mathcal{YD}_A^C

6 Crossed module of shelves (R, S, π, \cdot)

 \rightsquigarrow braided system ($A = S, C = R; \overline{\sigma}$).

Proposition (L.-W. 2015): $Z_{SD}, \tilde{Z}_{SD}: \mathcal{YD}_A^C \hookrightarrow \mathcal{Z}_A^C$

6 Crossed module of shelves (R, S, π, \cdot) \rightarrow braided system $(A = S, C = R; \overline{\sigma})$. Proposition (L.-W. 2015): $Z_{SD}, \tilde{Z}_{SD}: \mathcal{YD}_{A}^{C} \hookrightarrow Z_{A}^{C}$ $\rightarrow \otimes, \widetilde{\otimes}: \mathcal{M}(R, S) \times \mathcal{M}(R, S) \to \mathcal{M}(R, S)$ $(m \otimes m') *_{\otimes} s = (m \otimes m') *_{\widetilde{\otimes}} s = m * s \otimes m' *' s;$ $gr_{\otimes}(m \otimes m') = gr'(m'),$ $gr_{\widetilde{\otimes}}(m \otimes m') = gr(m) \triangleleft gr'(m').$

6 Crossed module of shelves (R, S, π, \cdot) \leftrightarrow braided system ($A = S, C = R; \overline{\sigma}$). **Proposition** (L.-W. 2015): $\left| Z_{SD}, \widetilde{Z}_{SD} : \mathcal{YD}_{A}^{C} \hookrightarrow \mathcal{Z}_{A}^{C} \right|$ $\rightsquigarrow \otimes, \widetilde{\otimes}: \mathcal{M}(R, S) \times \mathcal{M}(R, S) \to \mathcal{M}(R, S)$ $(m\otimes m')*_{\otimes}s=(m\otimes m')*_{\widetilde{\otimes}}s=m*s\otimes m'*'s;$ $gr_{\otimes}(m\otimes m')=gr'(m').$ $gr_{\widetilde{\otimes}}(m\otimes m')=gr(m) \triangleleft gr'(m').$ Theorem (L.-W. 2015):

+ \otimes is a pre-tensor structure.

\mathcal{I} Structure on \mathcal{YD}_A^C

6 Crossed module of shelves (R, S, π, \cdot) \leftrightarrow braided system ($A = S, C = R; \overline{\sigma}$). **Proposition** (L.-W. 2015): $\left| Z_{SD}, \widetilde{Z}_{SD} : \mathcal{YD}_{A}^{C} \hookrightarrow \mathcal{Z}_{A}^{C} \right|$ $\rightsquigarrow \otimes, \widetilde{\otimes}: \mathcal{M}(R, S) \times \mathcal{M}(R, S) \to \mathcal{M}(R, S)$ $(m\otimes m')*_{\otimes}s=(m\otimes m')*_{\widetilde{\otimes}}s=m*s\otimes m'*'s;$ $gr_{\otimes}(m \otimes m') = gr'(m'),$ $gr_{\widetilde{\otimes}}(m\otimes m')=gr(m) \lhd gr'(m').$ Theorem (L.-W. 2015): $\star \otimes$ is a pre-tensor structure. + $\widetilde{\otimes}$ is a non-strict pre-tensor structure, with interesting associators $\alpha_{M,M',M''} \colon (M \otimes M') \otimes M'' \xrightarrow{\sim} M \otimes (M' \otimes M'').$ $(m \otimes m') \otimes m'' \mapsto m * \pi(qr(m'')) \otimes (m' \otimes m'').$

\mathcal{I} Structure on \mathcal{YD}_A^C

6 Crossed module of shelves (R, S, π, \cdot) \leftrightarrow braided system ($A = S, C = R; \overline{\sigma}$). **Proposition** (L.-W. 2015): $\left| Z_{SD}, \widetilde{Z}_{SD} : \mathcal{YD}_{A}^{C} \hookrightarrow \mathcal{Z}_{A}^{C} \right|$ $\rightsquigarrow \otimes, \widetilde{\otimes}: \mathcal{M}(R, S) \times \mathcal{M}(R, S) \to \mathcal{M}(R, S)$ $(m\otimes m')*_{\otimes}s=(m\otimes m')*_{\widetilde{\otimes}}s=m*s\otimes m'*'s;$ $gr_{\otimes}(m \otimes m') = gr'(m'),$ $gr_{\widetilde{\otimes}}(m\otimes m')=gr(m) \lhd gr'(m').$ Theorem (L.-W. 2015): $\star \otimes$ is a pre-tensor structure. + $\widetilde{\otimes}$ is a non-strict pre-tensor structure, with interesting associators $\alpha_{M,M',M''} \colon (M \otimes M') \otimes M'' \xrightarrow{\sim} M \otimes (M' \otimes M''),$ $(m \otimes m') \otimes m'' \mapsto m * \pi(qr(m'')) \otimes (m' \otimes m'').$ Question: A braided pre-tensor structure?

\mathcal{V} Structure on \mathcal{YD}_A^C

5 Crossed module of Lie algebras $(L, N, \pi, [])$

$$\rightsquigarrow$$
 braided system ($A = N^+$, $C = L^+$; $\overline{\sigma}$).

Proposition (L.-W. 2015): $\left| \mathcal{YD}_{A}^{C} \hookrightarrow \mathcal{Z}_{A}^{C} \right|$

5 Crossed module of Lie algebras (L, N, π , [])

 \rightsquigarrow braided system ($A = N^+$, $C = L^+$; $\overline{\sigma}$).

Proposition (L.-W. 2015): $|\mathcal{YD}_A^C \hookrightarrow \mathcal{Z}_A^C|$

 $\rightsquigarrow \otimes: \mathcal{M}(L, N) \times \mathcal{M}(\overline{L, N}) \to \overline{\mathcal{M}}(L, N)$

 $(m\otimes m')*_{\otimes}n=m\otimes m'*'n+m*n\otimes m',$

 $\delta_{\otimes}(m\otimes m')=m_{\scriptscriptstyle(0)}\otimes m'_{\scriptscriptstyle(0)}\otimes m_{\scriptscriptstyle(1)}\cdot m'_{\scriptscriptstyle(1)}.$

5 Crossed module of Lie algebras $(L, N, \pi, [])$

 \rightsquigarrow braided system ($A = N^+$, $C = L^+$; $\overline{\sigma}$).

Proposition (L.-W. 2015): $\mathcal{YD}_A^C \hookrightarrow \mathcal{Z}_A^C$

 $\rightsquigarrow \quad \otimes : \mathcal{M}(L, N) \times \mathcal{M}(\overline{L, N}) \to \mathcal{M}(L, N)$

 $(m\otimes m')*_{\otimes}n=m\otimes m'*'n+m*n\otimes m',$

 $\delta_{\otimes}(m\otimes m')=m_{(\mathrm{o})}\otimes m'_{(\mathrm{o})}\otimes m_{(\mathtt{1})}\cdot m'_{(\mathtt{1})}.$

Theorem (L.-W. 2015): \otimes is a non-strict pre-tensor structure, with $\alpha_{M,M',M''}: (M \otimes M') \otimes M'' \xrightarrow{\sim} M \otimes (M' \otimes M''),$ $(m \otimes m') \otimes m'' \mapsto m * \pi(m''_{(1)}) \otimes (m' \otimes m''_{(0)}).$

Question: A braided pre-tensor structure?