Supplementary problem sheet 3

Integral calculus

- 1. Compute $\int (3x-1)^2 dx$ using two methods:
 - (a) first compute the square, then integrate term by term;
 - (b) use the *u*-substitution u = 3x 1.

Compare the two results. What explains their difference?

2. Compute the following indefinite integrals:

(a)
$$\int \cos^2(x) dx$$
;
(b) $\int \cos^3(x) dx$;
(c) $\int \tan^4(x) dx$;
(d) $\int \frac{(x+1)^2}{x^2+4} dx$;
(e) $\int \frac{1}{x^2-1} dx$;
(f) $\int \frac{1}{x(x^2+1)} dx$.

- 3. Compute $\int_0^{\pi/2} (\sin^2(\sin x) + \cos^2(\cos x)) dx$.
- 4. Let n be a positive integer. Compute $\int_0^1 x(1-x)^n dx$.
- 5. Let n and m be positive integers. Show that

$$\int_0^1 x^m (1-x)^n dx = \int_0^1 x^n (1-x)^m dx.$$

You do not need to compute these integrals.

- 6. Given an odd function f integrable on [-a, a], show that $\int_{-a}^{a} f(x) dx = 0$.
- 7. Find the following limits by evaluating appropriate definite integrals over [0,1]:

(a)
$$\lim_{N \to +\infty} \frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{N}}{N^{\frac{3}{2}}};$$

(b)
$$\lim_{N \to +\infty} \sum_{k=1}^{N} \frac{1}{N} \cos\left(\frac{k\pi}{2N}\right)$$
.

8. Evaluate the following integrals using geometric arguments:

(a)
$$\int_{-4}^{4} \sqrt{16 - x^2} \, dx$$
;

(b)
$$\int_0^1 x\sqrt{1-x^4} \, dx$$
.

9. Using differentiation, show that the following function is constant on $(0, +\infty)$:

$$h(x) = \int_0^x \frac{dt}{t^2 + 1} + \int_0^{\frac{1}{x}} \frac{dt}{t^2 + 1}.$$

10. Check if the Mean Value Theorem holds for the following function on [0, 2]:

$$f(x) = \begin{cases} 0, & x < 1, \\ 1, & x \ge 1. \end{cases}$$

Explain why.