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Zeta values

Definition

ζ(k) :=
∑
n≥1

1

nk
, k ≥ 2

Theorem (Euler, 1734)

ζ(2k) = (−1)k+1B2k (2π)
2k

2(2k)! where B2k are the
Bernoulli numbers.

Conjecture

The following are algebraically independent:

{π, ζ(3), ζ(5), ζ(7), . . .}
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Multiple zeta values

Definition

Let r ∈ N, k1, . . . , kr ∈ N be positive integers,
with kr ≥ 2. We define

ζ(k1, . . . , kr ) :=
∑

0<n1<n2<...<nr

1

nk11 nk22 · · · n
kr
r

.

Theorem

The Q-vector space spanned by multiple zeta
values is a Q-algebra.

As such, multiple zeta values satisfy many
relations, e.g. ζ(1, 2) = ζ(3).

3



The motivic Galois group

The Tannakian category MT (Z) of mixed Tate
motives over Spec(Z) is equivalent to the
category of finite dimensional representations of
an affine group scheme GMT (Z), called its
Galois group.

Theorem (Deligne [3])

GMT (Z) decomposes as

GMT (Z) ∼= Gm n UMT (Z)

where UMT (Z) is pro-unipotent with Lie algebra

gm ∼= Lie[σ3, σ5, . . .].
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The motivic Galois group

Theorem ([3])

For a Q-algebra R,

GMT (Z)(R) ⊂ R〈〈e0, e1〉〉

consists of power series whose coefficients
satisfy the motivic relations

Theorem (Brown [1])

(Regularised) MZVs satisfy the motivic
relations.

Conjecture

The motivic relations describe all relations
among multiple zeta values
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Relations among MZVs

Associator MZVs give coefficients of a Drinfeld
associator. This gives explicit relations and
has connections to the Grothendieck
Teichmüller group [4].

Double Shuffle Splitting the domain of summation in a
product gives the stuffle relations. A
similar process for an integral
representation gives the shuffle relations [5]

Conjecture

The double shuffle and associator relations are
equal to the motivic relations.
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Examples

Example

ζ(2)ζ(3) =
∑
m≥1

∑
n≥1

1

m2n3

=
∑

m>n≥1

1

m2n3
+

∑
n>m≥1

1

n3m2

+
∑

m=n≥1

1

n5

= ζ(2, 3) + ζ(3, 2) + ζ(5)
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Lie algebras of relations

To each set of relations we can associate an
affine group scheme

{Double shuffle}

{Associator relations}

⊂

{Motivic relations}

⊂

DMR

GT

GMT (Z)

By considering the associated Lie algebras, we
can reduce the question of equality and explicit
descriptions to one of linear algebra
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Lie algebras of relations

gm ⊂ grt ⊂ dmr0 ⊂ Q〈e0, e1〉

Relations among the coefficients of elements of
these Lie algebras describe relations among
multiple zeta values modulo products

Example

Modulo products

ζ(2, 3) + ζ(3, 2) + ζ(5) = 0
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Filtrations on multiple zeta values

Definition

Given a MZV ζ(k1, . . . , kr ), define its weight
k1 + k2 + · · ·+ kr and depth r .

Conjecture

MVZs are weight-graded.

Theorem

Motivic relations are weight graded.
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Depth graded MZVS

Depth does not induce a grading, but we can
consider the associated graded Lie algebra.
Relations among its coefficients describe
relations among MZVs modulo products and
terms of lower depth.

Example

The double shuffle relations say that

ζ(2, 3) + ζ(3, 2) + ζ(5) = ζ(2)ζ(3).

The depth graded version of this, modulo
products, is

ζ(2, 3) + ζ(3, 2) = 0.

13



Depth graded MZVs

Pro

Graded {σ2k+1}
have canonical
representatives in
Q〈e0, e1〉.
Graded shuffle
relations are much
easier

Con

Graded {σ2k+1}
are no longer a
generating set.

Additional
relations due to
modular forms

Example ([2])

Modulo terms of depth three or higher,

{σ3, σ9} − 3{σ5, σ7} = 0.

Hence, there exist ‘exceptional’ generators.
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The block filtration

A MZV can be identified uniquely with a
noncommative monomial w in {e0, e1}.

ζ(k1, . . . , kr )↔ e1e
k1−1
0 e1e

k2−1
0 . . . e1e

kr−1
0

We often write ζ(w) for ζ(k1, . . . , kr ) under this
identification. I introduce the following degree.

Definition

Define the block degree of this word degB(w)
to be the number of occurrences of a
subsequence eiei for i ∈ {0, 1} in e0we1.

This defines a unique factorisation into words of
length `1, . . . , `degB(w)+1.
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The block filtration

Define

Im(`1, . . . , `degB(w)+1) := (−1)rζ(k1, . . . , kr ).

Definition

Define the block filtration on Q〈e0, e1〉 by

BnQ〈e0, e1〉 := 〈w | degB(w) ≤ n〉Q.

This induces a filtration on the space of
multiple zeta values

BnZ := 〈Im(`1, . . . , `m+1) | m ≤ n〉Q.
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Block graded Lie algebras of relations

Definition

Define the block graded motivic Lie algebra

bg :=
⊕
n≥1
Bngm/Bn+1gm.

Theorem (K.)

gm ∼= bg

Example

Modulo terms of lower block degree

ζ(5) = 0.
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The block graded Lie algebra

Pros

No Lie algebraic
information lost.

Graded {σ2k+1}
have canonical
representatives.

The Lie bracket is
easier to compute.

Cons

Known relations
hard to grade.

No known defining
relations.

.

In my recent work, I provide severaly families of
block graded relations, including complete set
of relations describing B1gm/B2gm.
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Block shuffle

Theorem (K.)

Then modulo products and terms of lower block
degree ∑

σ∈Sh(k,n−k)

Im(`σ−1(1), . . . , `σ−1(n)) = 0.

Corollary (Charlton’s cyclic insertion conjecture)

∑
σ∈Cn

Im(`σ−1(1), . . . , `σ−1(n)) = 0.
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Block relations

Lemma (K.)

bg ↪→
⊕
n≥0

Q[x1, . . . , xn].

Theorem (K.)

Identifying bg with its image, we can uniquely
describe bg in low block degree via explicit
relations.
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Reduced block relations

Lemma

bg ↪→
⊕
n≥0

Q[x1, . . . , xn].

We denote the image by rbg.

Theorem (K.)

Let r(x1, . . . , xn) ∈ rbg, and let σ ∈ Dn be an
element of the dihedral group. Then

r(xσ(1), . . . , xσ(n)) = sgn(σ)nr(x1, . . . , xn)
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Reduced block relations

Theorem (K.)

Define the differential operator

D :=
∏

(•1,...,•n−1)∈{+,−}n−1

∂

∂x1
•1

∂

∂x2
•2· · ·•n−1

∂

∂xn

Then Dr = 0 for all r(x1, . . . , xn) ∈ rbg.

Theorem (K.)

Along with two technical regularisation
conditions, these relations uniquely describe bg
in low block degree.
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Producing genuine relations

Given a defining relation in bg, can we lift it to
a genuine motivic relation? We often can. For
example, as a consequence of the block shuffle
relation, we find the following.

Theorem (K.)

For any k, n ≥ 0,

ζ({2}k�{1, 3}n) =
π4n+2k

(2n+k
k

)
(2n + 1)(4n + 2k + 1)!

where the left hand side is the sum over all
shuffles of (2, 2, 2, . . . , 2) with
(1, 3, 1, 3, . . . , 1, 3).
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Producing genuine relations

Upcoming work due to Hirose and Sato gives
the following lift of the block shuffle relation

Definition

Given tuples of positive integers, (k1, . . . , km),
(l1, . . . , ln), define recursively the formal sum

(k1, . . . , km)�̂(l1, . . . , ln) = (k1, (k2, . . . , km)�̂(l1, . . . , ln))

+ (l1, (k1, . . . , km)�̂(l2, . . . , ln))

− Lk1+l1((k2, . . . , km)�̂(l2, . . . , ln))

where

(k1, . . . , km)�̂∅ = ∅�̂(k1, . . . , km) = (k1, . . . , km)

and Ls((k1, . . . , km)) = (k1 + s, k2, . . . , km).
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Producing genuine relations

Theorem (Hirose, Sato)

Extending Im linearly,

Im((k1, . . . , km)�̂(l1, . . . , ln) = 0

modulo products (up to some normalisation)

Theorem (K.)

For `1 + `2 + `3 = 2N + 2

Im(`1 − 1, `2, `3) + Im(`1 − 1, `3, `2)

−Im(`1, `2 − 1, `3)− Im(`1, `3 − 1, `2)− βζ(2)N

=
∑
r≤s

2r+2s+2≤2N

αr ,sζ(2r + 1)ζ(2s + 1)ζ(2)N−r−s−1.
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Thank you!

Questions?
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