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Abstract. Let (W,S) be a Coxeter system. An element in W and an ordered list of
elements in S give us a subword complex, as defined by Knutson and Miller. We define the
“fish product” between an involution in W and a generator in S, which is also discussed
by Hultman. This “fish product” always produces an involution. The structure of the
involution subword complex ∆̂(Q,w) behaves very similarly to the regular subword complex.

In particular, we prove that ∆̂(Q,w) is either a ball or sphere. We then give an explicit
description of a special class of involution subword complexes in Sn and demonstrate that
they are isomorphic to the dual associahedron.

1. Introduction

Subword complexes were introduced by Knutson and Miller in [7] in order to discuss
the combinatorics of determinantal ideal and Schubert polynomials, before being studied in
their own right in [6]. There, it was realised that subword complexes also illuminated the
nature of reduced expressions in Coxeter groups and had further connections to Grothendieck
polynomials. One of their main results was a characterisation of the topology of these
complexes. In brief: a subword complex ∆(Q,w) associated to a word Q in the generators
of a Coxeter group, and an element w of the Coxeter group, has faces given by subwords
P ∈ Q such that Q \ P is an expression for w. Topologically, it is shown that, regardless
of choice of group, Q or w, ∆(Q,w) is always a sphere or a ball. Knutson and Miller also
provide a method of determined the topology more precisely, by introducing the Demazure
product, a maximal reduced subword of Q. By computing the Demazure product of Q, the
topology becomes known.

Specific choices of Q and w were found to give quite interesting structures. By choosing
lexicographically minimal subwords of c-sorting words in the symmetric group, Ceballos,
Lambe and Stumpe were able to view the associahedron as a subword complex, establishing
a correspondence between reduced expressions of w and triangulations in [2]. They went
on to establish subword complexes which can be realised as generalised associahedra and
multi-associahedra.

In [9] Pilaud and Stumpe extend this, working in more general groups to find the gener-
alised associahedra of Hohlweg and Lange as subword complexes. The relationship between
subword complexes and the associahedron is further strengthened by the work of Woo, who
in [13] established a link between Schubert polynomials, the reason for the introduction of
subword complexes, and the Catalan numbers, the vertex count of the associahedron.

In this paper, we develop the theory of subword complexes in a slightly different setting,
introduced in [11] and developed by Hultman in [4]. We restrict ourselves to consider only
involutions in our Coxeter group and introduce a new product in order to remain in this
space.
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For W a Coxeter group with generators S, w ∈ W an involution, and s ∈ S, we define the
“fish product”

w o s =
{
ws if ws = sw
sws else

With this product, we redefine the subword complex in Section 2 of this paper and go on
to develop results analoguous to those of Knutson and Miller in Section 3. We find, once
again, that the subword complex is topologically a ball or a sphere, and that it’s topology is
determined by an involution-Demazure product. We also note a few other properties, such
as shellability and purity of the complex, that follow from the properties of the involution
product.

In Section 4, we look at a family of subword complexes in the symmetric group., analoguous
to those of Ceballos, Lambe and Stumpe, choosing an lexicographically minimal subword
of an involution c-sorting word for complete reversal. We find that we obtain the Catalan
numbers as a count for our facets and show that our complex is the dual associahedron. We
establish a correspondence between triangulations of polygons and facets of our complex and
provide a recursive construction of facets of our complex. We introduce a partial order on
the facets, allowing us to consider them as points in the Tamari lattice.

In Section 5, we provide a generalisation of this family, which we believe to be analoguous
to the work of Ceballos, Lambe and Stumpe, possibly leading to multi-associahedra. We
mention a few preliminary results, which we hope will spark future work in this area

2. Topology of Subword Complexes

Throughout, let W be a Coxeter group with generators S. In this section, we present a
result analogous to that of [6], but in the involution setting.

Definition 2.1. For w ∈ W an involution, and s ∈ S, we define the “fish product” of w and
s to be

w o s =
{
ws if ws = sw
sws else

Note that the result will once again be an involution.

Remark 2.2. For any w ∈ W, s ∈ S, we have that (wos)os = w. To see this, consider the
two cases. First, where ws = sw. Then (wo s)o s = (ws)o s. Since ws = sw, we have that
wss = sws and so wsos = wss = w. Second, where ws 6= sw. Then (wos)os = (sws)os.
Now, (sws)s = sw 6= ws = s(sws), so (sws) o s = s(sws)s = w.

We will often abuse notation and write w o s1 o s2 · · ·o sn to indicate
(· · · ((w o s1) o s2) · · · ) o sn. If it is ever unclear, assume that we intend left associativity
for the fish product.

Proposition 2.3. In the fish product, the regular Coxeter relations hold i.e s, t commute if
m(s, t) = 2, etc. In Sn, we also have so to · · · = to so · · · , for any s, t ∈ Sn

Definition 2.4. A word of size m is an ordered sequence Q = (s1, s2, . . . , sm) of elements
of S. An ordered subsequence P of Q is called a subword of Q. We say that P represents
w ∈ W if the ordered fish product of the elements of P is an expression for w. We call
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such an expression reduced if it is an expression of minimal length. We say that P contains
w ∈ W if some subword of P represents w.

We denote by R̂(w) the set of all words P such that P represents w. Also, let ˆ̀(w) be the
length of a reduced expression for w.

The involution subword complex ∆̂(Q,w) is the set of subwords Q\P whose complements

P contain an element of R̂(w).

Remark 2.5. R̂(w) is closed under the Coxeter relations. That is, any expression related

to an element of R̂(w) by a finite application of the Coxeter relations is also an element of

R̂(w).

Definition 2.6. A k-simplex is a k-dimensional polytope that is the convex hull it k + 1
vertices.

Definition 2.7. A simplicial complex K is a collection of simplices such that

(1) Any face of a simplex in K is also in K.
(2) The intersection of any two simplices σ1, σ2 ∈ K is a face of both σ1 and σ2.

The following is immediate from the definitions and the fact that all reduced expressions
for a given element have the same length.

Lemma 2.8. ∆̂(Q,w) is a pure simplicial complex whose facets are the subwords Q\P such
that P ⊆ Q represents w.

Proposition 2.9 (Exchange Property - [4]). Suppose Q = (s1, . . . , sk) represents w and
ˆ̀(w o s) < k for some s ∈ S. Then w o s = s1 o · · · o s̃i o · · · o sk for a unique i ∈ [k],
where s̃i denotes the deletion of si.

Proposition 2.10 (Lifting Property - [4]). Let s ∈ S and v, w ∈ W satisfy v ≤ w and
w o s ≤ w. Then v o s ≤ w.

Definition 2.11. Let ∆ be a simplicial complex and let v ∈ ∆ be a single vertex.

(1) The deletion of v from ∆ is del(v,∆) = {F ∈ ∆ : v /∈ F}.
(2) The link of v in ∆ is link(v,∆) = {F \ {v} : F ∈ ∆, v ∈ F}.
(3) ∆ is vertex decomposable if ∆ is pure (all facets of ∆ are the same size) and either

i) ∆ = {∅} or
ii) For some vertex v ∈ ∆, both del(v,∆) and link(v,∆) are vertex-decomposable.

(4) A shelling of ∆ is an ordered list F1, F2, . . . , Fk of the facets of ∆ such that for each
i ≤ t,

⋃
j<i Fj ∩ Fi is a subcomplex generated by codimension 1 faces of Fi, where F

denotes the set of faces of F .
(5) ∆ is shellable if it is pure and has a shelling.

It was proved by Provan and Billera [10] that vertex-decomposability implies shellability,
so in order to establish shellability of the involution subword complexes, we only need to
prove that they are vertex-decomposable.
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Lemma 2.12. ∆̂(Q,w) is vertex-decomposable, hence shellable.

Proof. We proceed by induction on the length of Q. Let Q = s1s2 · · · sk and let Q′ :=
s1s2 · · · sk−1. We claim link(sk, ∆̂(Q,w)) = ∆̂(Q′, w) and del(sk, ∆̂(Q,w)) = ∆̂(Q′, w) or

∆̂(Q′, w o sk).

Suppose P ∈ link(sk, ∆̂(Q,w)) Then P ∪ {sk} ∈ ∆̂(Q,w). Then Q \ (P ∪ {k}) contains

an element of R̂(w) and hence Q′ \P contains an element of R̂(w) and P ∈ ∆̂(Q′, w). Simi-

larly, every element of ∆̂(Q′, w) is an element of link(sk, ∆̂(Q,w)) and so link(sk, ∆̂(Q,w)) =

∆̂(Q′, w).

Suppose P ∈ del(sk, ∆̂(Q,w)) and no element of R̂(w) ends in sk. Then, P ∈ ∆̂(Q,w),

sk ∈ Q\P and Q\P contains an element of R̂(w). Hence Q′\P contains an element of R̂(w)

and so P ∈ ∆̂(Q′, w). Similarly, every element of ∆̂(Q′, w) is an element of del(sk, ∆̂(Q,w))

and so del(sk, ∆̂(Q,w)) = ∆̂(Q′, w).

If we have an element of R̂(w) ending in sk, then we claim del(sk, ∆̂(Q,w)) = ∆̂(Q′, w o sk).

It is clear that every element of ∆̂(Q′, w o sk) is an element of del(sk, ∆̂(Q,w)). Suppose

P ∈ del(sk, ∆̂(Q,w)). Then P ∈ ∆̂(Q,w) and sk ∈ Q \ P . If Q \ P contains an element

of R̂(w) ending in sk, then Q′ \ P contains an element of R̂(w o sk). If Q \ P contains an

element of R̂(w) not ending in sk, then Q′ \ P contains an element of R̂(w o sk), by the

exchange relation. Hence P ∈ ∆̂(Q′, w o sk) and so del(sk, ∆̂(Q,w)) = ∆̂(Q′, w o sk).

Therefore, by induction, both link(sk, ∆̂(Q,w)) and del(sk, ∆̂(Q,w)) are vertex-decomposable.

Thus, ∆̂(Q,w) is vertex-decomposable.
�

Definition 2.13. We define the Demazure product of w ∈ W and s ∈ S by

w ◦ s =
{
w o s if ˆ̀(w o s) > ˆ̀(w)

w if ˆ̀(w o s) < ˆ̀(w)

We define the Demazure product of a word Q = s1s2 · · · sk to be δ̂(Q) = (· · · ((s1 ◦ s2) ◦
s3) · · · ◦) ◦ sk

Notation: If some reduced expression of v ∈ W has a subword that represents w ∈ W ,
we write v ≥ w. This is the involution analogue of the Bruhat partial order. If a proper
subword of a reduced expression of v represents w, we write v > w.

For a word Q = (s1, . . . , sk) in S and s ∈ S, we write soQ to indicate the letter-by-letter
product of s and Q, so s1 o · · ·o sk. Similarly, we have Qo s = s1 o · · ·o sk o s. Given a
second word P = (t1, . . . , tr) in S, we write Q o P to indicate s1 o · · · o sk o t1 o · · · o tr.

We will use
←−
Q to denote the word formed by reversing the letters of Q.

Lemma 2.14. Let P be a word in W and w ∈ W .

(1) The Demazure product δ̂(P ) ≥ w if and only P contains w.
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(2) If δ̂(P ) = w, then every subword of P containing w has Demazure product w.

(3) If δ̂(P ) > w, then P contains a word T representing an element w′ > w satisfying

|T | = ˆ̀(w′) = ˆ̀(w) + 1.

Proof. (1) First, suppose that δ̂(P ) ≥ w.

Let w′ = δ̂(P ), and let P ′ ⊆ P be the subword obtained by reading P in order and
omitting any generators that do not increase length. Notice that P ′ represents w′ by
construction. Since w′ ≥ w, we have by definition that any reduced expression for
w′ has a subword that represents w. Thus, since P ′ is a reduced expression for w′,
P ′ has a subword that represents w. Hence, P ′ contains w and thus P also contains w.

Now, suppose that P contains w.
Let T ⊆ P such that T represents w. We will induct on |P |. Let s ∈ S be the last
generator in the word P . Then, from the definition of the Demazure Product and
the exchange property we have that δ̂(P ) o s < δ̂(P ). Also, by the definition of the

Demazure Product, we have that δ̂(P \s) is δ̂(P ) or δ̂(P )os. Hence, δ̂(P \s) ≤ δ̂(P ).
First, consider the case where w o s > w. This implies that T cannot have s as its
final letter, so T ⊆ P \ s. By induction we have that w ≤ δ̂(P \ s). We have from

above that δ̂(P \ s) ≤ δ̂(P ), so w ≤ δ̂(P ) as desired.
Now, consider the case where w o s < w. Let T ′ ⊂ T such that T ′ represents w o s.
Again we have that T ′ cannot have s as its final letter, so T ′ ⊆ P \s. So by induction

we have that wo s ≤ δ̂(P \ s). Since wo s < w and wo s ≤ δ̂(P \ s) ≤ δ̂(P ), by the

lifting property, w ≤ δ̂(P ).
(2) Let P ′ ⊆ P be such that P ′ contains w. We have from the definition of the Demazure

Product that δ̂(P ) ≥ δ̂(P ′). Since part 1 holds, we have that δ̂(P ′) ≥ w. By

assumption, δ̂(P ) = w. Hence, w = δ̂(P ) ≥ δ̂(P ′) ≥ w and thus δ̂(P ′) = w.

(3) Choose any w′ ∈ W such that ˆ̀(w′) = ˆ̀(w) + 1 and w < w′ ≤ δ̂(P ), then apply part
1 to conclude that P contains a word T representing w′.

�

Lemma 2.15. Let T be a word in W , and w ∈ W such that |T | = ˆ̀(w) + 1.

(1) There are at most two elements s ∈ T such that T \ s represents w.

(2) If δ̂(T ) = w,then there are two distinct s ∈ T such that T \ s represents w.
(3) If T represents w′ > w, then T \ s represents w for exactly one s ∈ T .

Proof. (1) It is trivial if |T | ≤ 2, so assume |T | ≥ 3 and that there exist s1, s2, s3 ∈ T
such that T \ si represents w for i = 1, 2, 3. Let T = T1s1T2s2T3s3T4. Since T \ s2
and T \ s1 both represent w, we have that

w = ido T1 o s1 o T2 o T3 o s3 o T4 = ido T1 o T2 o s2 o T3 o s3 o T4.

We can cancel from the right to get id o T1 o s1 o T2 = id o T1 o T2 o s2, which
implies

(1) id = ido T1 o T2 o s2 o
←−
T2 o s1 o

←−
T1.

Since T \ s3 represents w, we have that

w = ido T1 o s1 o T2 o s2 o T3 o T4.
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Substituting the expression for id obtained in (1),

w = ido T1 o T2 o s2 o
←−
T2 o s1 o

←−
T1 o T1 o s1 o T2 o s2 o T3 o T4

= T1 o T2 o T3 o T4.

Therefore T \ s3 was not reduced, giving a contradiction.

(2) δ̂(T ) = w means that there is some s ∈ T such that T = T1sT2 and T1T2 represents w.

Furthermore, if T1 represents w1, then δ̂(T1) = δ̂(T1s) = w1 and so ˆ̀(w1) > ˆ̀(w1o s).
Hence w1 > w1 o s by the exchange relation. This means that omitting some s′ 6= s
from T1 gives a reduced expression for w1os and thus both T \s and T \s′ represent
w.

(3) This follows immediately from the exchange property.
�

We use the above lemmas to discern the topology of our complex, alongside the following
result:

Lemma 2.16. Suppose every codimension 1 face of a shellable simplicial complex ∆ is
contained in at most two facets. The ∆ is a topological manifold-with-boundary that is
homeomorphic to a either a ball or a sphere. The facets of the topological boundary of ∆ are
the codimension 1 faces of ∆ contained in exactly one facet of ∆

Proof. See [1], Proposition 4.7.22 �

Theorem 2.17. The subword complex ∆̂(Q,w) is either a ball or a sphere. A face Q \ P is

in the boundary of ∆̂(Q,w) if and only if P has Demazure product δ̂(P ) 6= w.

Proof. By part 1 of Lemma 2.15, every codimension 1 face of ∆̂(Q,w) is contained in at

most two facets, and ∆̂(Q,w) is shellable by Lemma 2.12. Hence, by Lemma 2.16, ∆̂(Q,w)
is homeomorphic to a ball or sphere.

If Q \ P is a face and δ̂(P ) 6= w, then, by part 1 of Lemma 2.14, δ̂(P ) > w and so we can
choose T as in part 3 of Lemma 2.14. Then, by part 3 of Lemma 2.15 Q\T is a codimension

1 face contained in exactly one facet of ∆̂(Q,w). Thus, by Lemma 2.15, Q \P ⊂ Q \ T is in

the boundary of ∆̂(Q,w).

If δ̂(P ) = w, then part 2 of Lemmas 2.14 and 2.15 tell us that every codimension 1 face

Q \ T ∈ ∆̂(Q,w) containing Q \ P is contained in two facets of ∆̂(Q,w). Lemma 2.16 says

that every such Q \ T , and hence Q \ P , is in the interior of ∆̂(Q,w).
�

Corollary 2.18. The complex ∆̂(Q,w) is a sphere if δ̂(Q) = w and a ball otherwise

3. Catalan Subword Complexes

3.1. Background. Recall that the symmetric group Sn is a Coxeter group with generators
si = (i i+1), i = 1, 2, . . . n − 1. In this section, we let our Coxeter group to be S2n and we
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use i to denote si.

Let w0 be the reverse permutation in S2n, given in one-line notation as 2n 2n−1 . . . 1.
We will be interested in the word 1 2 . . . 2n 2 3 . . . 2n−1 . . . n n+1 in the generators of
S2n, which we denote by Qn. This word represents w0 and is in fact the lexicographically
minimal such word. Similarly, let w0

′ be the reverse permutation in S2n−1. We will be
interested in the word 1 2 . . . 2n−1 2 3 . . . 2n−2 . . . n, denoted Q′n. This is a word of interest,
as it is the lexicographically minimal involution word of the reverse permutation, and is
thus an involution analogue of the c-sorting word for the reverse permutation with c =
1 2 3 . . . 2n−1 2n

Let the blocks be the longest consecutive increasing subwords of Qn and Q′n. So the first
block of Qn is 1 2 . . . 2n, the second block is 2 3 . . . 2n−1, and so on. Similarly, the first block
of Q′n is 1 2 . . . 2n−1, the second block is 2 3 . . . 2n−2,

Definition 3.1. Let ∆̂n be ∆̂(Qn, w0) and let Fn be the number of facets of ∆̂n.

Let ∆̂′n = ∆̂(Q′n, w
′
0).

We will show that the complexes ∆̂n and ∆̂n
′ each have Cn facets, where Cn is the nth

Catalan number, given by 1
n+1

(
2n
n

)
.

Lemma 3.2. Q = (s1, s2, . . . , s2n−1, s2, s3, . . . , s2n−2, . . . , sn) ∈ R̂(w0).

Proof. We know from [5] that the length of any reduced word of w0 is n2, so we just need to
find an expression for w0 of n2 terms. We claim that

w0 = s1 o s2 o · · ·o s2n−1 o s2 o s3 o · · ·o s2n−2 o · · ·o sn.

First, consider the value of si o si+1 o · · ·o sj for some i < j. Since sisi+1 6= si+1si, we have
(si+1sisi+1) o si+2 o · · · o sj. Now si+1sisi+1 is the transposition (i i+2). Notice that, in
general, si+k(i i+k) 6= (i i+k)si+k, so to compute (i i+k)osi+k, we will conjugate to get the
transposition (i i+k+1). By induction, we have that si o si+1 o · · ·o sj is the transposition
(i j + 1).
Notice also that once we have finished expanding the section si o si+1 o · · ·o sj, none of the
following terms will involve either i or j + 1, since they are all of the form sk for i < k < j.
Hence, the transposition (i j+1) will commute with those terms since they form disjoint
cycles. Thus, we can ignore the (i j+1) when computing the remainder of the expression.
So, we have

s1os2o · · ·os2n−1os2os3o · · ·os2n−2o · · ·osn = (1 2n)(2 2n−1) · · · (n−1 n+2)(n n+1),

which can be easily seen to be an expression for w0. �

Remark 3.3. Every facet of the complex ∆̂n contains the vertex 2n.

Lemma 3.4. Only even digits appear as vertices and hence we have at most
(
n+1
2

)
vertices.

Proof. To see this, first note that, due to the block structure of our word, we only need to
consider the Demazure product on pairs of blocks. Next note that

δ̂(k k+1 . . . l−1 l k k+1 . . . l−1 l) = δ̂(k k+1 . . . l−1 l k k+1 . . . l−1)
7



when l > k, as

w = sk o sk+1 o · · ·o sl−1 o sl o sk o sk+1 o · · ·o sl−1 o sl

= sk o sk+1 o sk o sk+2 o sk+1 o · · ·o sl−2 o sl o sl−1 o sl by the Coxeter relations

= sk+1 o sk o sk+2 o sk+1 o · · ·o sl−2 o sl−1 o sl o sl−1 o sl by the Coxeter relations

= sk+1 o · · ·o sl o sl−1 o sl o sl

Similarly

δ̂(1 2 . . . 2n−1 2n) = δ̂(1 2 . . . 2n−1)

δ̂(k k+1 . . . k+i k+i+2 . . . l k+1 . . . k+i) = δ̂(k k+1 . . . k+i k+i+2 . . . l k+1 . . . k+i−1)

δ̂(k k+1 k+2 . . . l k k+1 . . . l−1) = δ̂(k k+1 k+2 . . . l k+1 . . . l−1)

Let Q′ = (1 2 . . . 2n 2 . . . n n+1), omitting the Kth letter, and suppose K is odd. If it is in the
kth block, the Demazure product up to that block will give w = (1 2n)(2 2n−1) · · · (l−1 2n−l+2).
If the Kth letter is k + i and not at the start of the block, i.e i 6= 0, then we can multiply
through the next i blocks to get

δ̂(Q′) = δ̂(w k · · · k+i−1 k+i+1 · · · 2n−k+1 k+1 · · · k+i−2 k+i · · · 2n−(k+i−1)+1 k+i+i · · · )
omitting one letter from each of the blocks starting with k through to k+ i. Then the K+ ith

block will be missing the first letter, since the first letter of each block is in an odd position
and the letter we eliminate has the same parity as the missing one in the previous block
(i + (2n − k) − (k + i − 1) is even), and as we move one letter closer to the start of the
block as we move from block to block, it must happen.In that block, we must also omit the
last letter, as we could otherwise obtain the sequence l−1 l l−1 l, and, hence we must have
that every block afterwards is missing the last letter. We have omitted at least n+ 1 letters.
Thus, ˆ̀(δ̂(Q′)) < n2 and so δ̂(Q′) doesn’t contain w0. Hence, neither does Q′. So odd digits
do not appear as vertices, giving our result.

�

Lemma 3.5. (k k+1)(k+2 k+3) · · · (k+l k+l+1) o sk+1 o sk+2 o · · ·o sk+l =
(k k+l+1)(k+1 k+2)(k+3 k+4) · · · (k+l−1 k+l) for all even l

Proof. We proceed by induction. Let w = (k k+m)(k+1 k+2)(k+3 k+4) . . . (k+m−2 k+m−1).
Note that

w o sk+m o sk+m+1 =(k k+m)(k+1 k+2)(k+3 k+4) · · ·
(k+m−2 k+m−1)(k+m+1 k+m+2) o sk+m o sk+m+1

=(k+m k+m+1)(k k+m)(k+1 k+2)(k+3 k+4) · · · (k+m−2 k+m−1)

(k+m k+m+1) o sk+m+1

=(k+m+1 k+m+2)(k k+m+1)(k+1 k+2)(k+3 k+4) · · ·
(k+m−2 k+m−1)(k+m k+m+2)(k+m+1 k+m+2)

=(k k+m+2)(k+1 k+2)(k+3 k+4) · · · (k+m−2 k+m−1)

(k+m k+m+1)

Then, as (k k+1)(k+2 k+3) o sk+1 o sk+2 = (k k+3)(k+1 k+2), we can iterate this to
obtain the result. �
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Lemma 3.6. {2, 4, 6, . . . , 2n} is a facet of ∆̂n

Proof. s1 o s3 o s5 o · · ·o s2n−1 = (1 2)(3 4) · · · (2n−2 2n−1) and so by Lemma 3.5

s1 o s3 o s5 o · · ·o s2n−1 o s2 o · · ·o s2n−1 = (1 2n)(2 3)(4 5) · · · (2n−2 2n−1)

Repeatedly applying Lemma 3.5 in this manner, we get

s1 o s3 o · · ·o s2n−1 o s2 o s3 o · · ·o s2n−1 o · · ·o sn o sn+1 = (1 2n)(2 2n−1) · · · (n n+1).

Hence s1 o s3 o · · · o s2n−1 o s2 o s3 o · · · o s2n−1 o · · · o sn o sn+1 ∈ R̂(w), giving our
result. �

3.2. Counting Facets.

Theorem 3.7. Let Fn be the number of facets of ∆̂n. Then Fn+1 =
∑n

i=0 FiFn−i

In order to show this, we will establish a bijection between the facets of ∆̂n+1 and pairs
of facets in ∆̂i and ∆̂n−i for 0 ≤ i ≤ n. We define ∆̂0 to be the complex with exactly one
facet, namely, the empty facet.

For a facet F of ∆̂n, we say that it removes a letter of Qn if that letter is not included in
the subword of Qn corresponding to F that is a reduced expression for w.

Let F be a facet of ∆̂n+1. Define ϕ(F ) as follows:
In the first block of Qn+1, consider the largest letter (not 2(n+1)) that is removed by F .
Since this must be even, we can label it as 2i for some 1 ≤ i ≤ n. If the only letter removed
in the first block is 2(n+ 1), we set i = 0.

Now, ϕ(F ) is the pair of facets F ′ in ∆̂i and F ′′ in ∆̂n−i given by the following procedure:

(1) Left-align the blocks of Qi with the first i blocks of Qn+1.
(2) For each letter removed by F in the first i blocks of Qn+1, remove the corresponding

letter in Qi if one exists.
(3) Let F ′ be the set of indices that removes those letters from Qi.
(4) Left-align the blocks of Qn−i with the last n− i blocks of Qn+1. (The blocks are the

same length, so they will in fact line up exactly.)
(5) For each letter removed by F in the last n− i blocks, remove the corresponding letter

in Qn−i.
(6) Let F ′′ be the set of indices that removes those letters from Qn−i.

We define ϕ−1(F ′, F ′′) to be the natural inverse of this map.

To illustrate the definitions of ϕ, ϕ−1, consider the following examples.

Example 3.8. Consider the facet {4, 10, 12, 26, 28} in ∆̂5. We can write this as follows,
where underlines denote the removal of a letter:

1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 3 4 5 6 7 8 4 5 6 7 5 6

Here, we choose i = 2, so F ′ and F ′′ will each be facets of ∆̂2. Aligning the blocks of Q2

with the first 2 and last 2 blocks of Q5 gives:

1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 3 4 5 6 7 8 4 5 6 7 5 6
1 2 3 4 2 3 1 2 3 4 1 2

9



Finally, we remove the corresponding letters to get our new facets:

1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 3 4 5 6 7 8 4 5 6 7 5 6
1 2 3 4 2 3 1 2 3 4 1 2

So ϕ({4, 10, 12, 26, 28}) = ({4, 6}, {2, 4}). Observe that each of these are, in fact, facets of ∆̂2.

Now, consider the pair of facets ({2}, {4, 6, 8}) in ∆̂1 and ∆̂3, respectively. We will use

these to construct a facet in ∆̂5. First, we left-align the block of Q1 with the first block of
Q5. Then, we align the blocks of Q3 with the last 3 blocks of Q5. This gives us:

1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 3 4 5 6 7 8 4 5 6 7 5 6
1 2 1 2 3 4 5 6 2 3 4 5 3 4

Now, we remove the letters in Q1 and Q3 corresponding to our two facets:

1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 3 4 5 6 7 8 4 5 6 7 5 6
1 2 1 2 3 4 5 6 2 3 4 5 3 4

Finally, we remove the corresponding letters in Q5 and remove 10 to get our new facet.

1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 3 4 5 6 7 8 4 5 6 7 5 6
1 2 1 2 3 4 5 6 2 3 4 5 3 4

So ϕ−1({2}, {4, 6, 8}) = {2, 10, 22, 24, 26}. Observe that this is a facet of ∆̂5.

Now, the proof of Theorem 3.7 can be completed by showing that ϕ, ϕ−1 are well-defined
and always produce facets.

Proof. We will now show that ϕ is well defined and gives facets in ∆̂i and ∆̂n−i. The choice
of i is clearly well defined, so we need only show that the image is indeed a pair of facets.

Suppose Qn \F = 1 2 . . . 2i . . . 2n 2 3 . . . 2n−1 . . . n n+1, with underlined entries omitted.
Then, using the Coxeter relations, this will evaluate to the same result as

1 2 . . . 2i 2 3 . . . 2i−1 . . . i+1 || 2i+1 . . . 2n−1 2n | 2i . . . 2n−1 | 2i−1 . . . 2n−2 | . . . | i+1 . . . 2n−i |

| i+2 . . . 2n−i−1 . . . n n+1

We claim that before the line break, all omitted elements must occur prior to the double
line, that the evaluation up to the double line is (1 2i)(2 2i−1) . . . (i i+1) and that the
evaluation up to the line break is (1 2n)(2 2n−1) . . . (i 2n−i+1)(i+1 2n−i). This will imply
that the word after the line break must evaluate to (i+2 2n−i−1) . . . (n n+1). If all these

hold true, then our map is well defined, giving a facet in both ∆̂i and ∆̂n−i.
We start by showing that the evaluation of this word up to the double line is (1 2i)(2 2i−1)

. . . (i i+1). By the definition of the fish product, it must be a product of disjoint transpo-
sitions and these transpositions must be contained in S2i. Suppose the evaluation contains
(k 2i). The rest of the first block evaluates to (2i+1 2n). Evaluating the second block,
our expression will then contain (k 2n). If k 6= 1, we either had (1 m),m < i, in which
case 1 is now fixed, or m ≥ i, in which case we get (1 2n−2i+m). But we must have
(1 2n) as F is a facet. Hence, k = 1. Similarly, we get that the evaluation must contain
(2 2i−1)(3 2i−2) . . . (i i+1). It must also be reduced, as F is a facet. Hence it contains i

omitted elements and ϕ gives a facet in ∆̂i

10



Then, in order to get (1 2n) in our final expression, we must have all remaining elements
of the first two blocks. This will then give us (2 2i−1), which means we need all remaining
elements of the next block in order to obtain (2 2n−1). Similarly, we cannot omit any of the
remaining elements of the first i + 1 blocks. Furthermore, the evaluation of the first i + 1
blocks is (1 2i)(2 2i−1) . . . (i i+1) and we have omitted i+ 1 elements.

Hence, we must omit n − i elements in the remaining blocks and it must evaluate to
(i+1 2n−i) . . . (n n+1), implying that ϕ gives a facet in ∆̂n−i. Hence ϕ is well defined.

It is clear that ϕ−1 is well-defined, so we show that ϕ−1 produces a facet in ∆̂n. Let F ′

be a facet in ∆̂i for some 0 ≤ i ≤ n− 1. Let F ′′ be a facet in ∆̂n−i−1. Let F = ϕ−1(F ′, F ′′).
We need to show that Qn \ F is a reduced expression for w0.

Since F has i elements from F ′, n− i−1 elements from F ′′ and the additional element 2n,
it will have n elements. Hence, Qn \ F has the appropriate number of letters for a reduced
expression for w0. So, we just need to show that taking the ordered fish product of the
elements of Qn \ F results in w0.

As above, we can use the Coxeter relations to rewrite Qn as

1 2 . . . 2i 2 3 . . . 2i−1 . . . i i+ 1 | 2i+1 . . . 2n 2i . . . 2n−1 2i−1 . . . 2n−2 . . . i+2 . . . 2n−i+1

i+1 . . . 2n−i | i+2 . . . 2n−i−1 . . . n n+1

By the definition of ϕ−1, the word before the first vertical line has removals that correspond
precisely to a facet of ∆̂i. The word after the second vertical line has removals that correspond
to a facet of ∆̂n−i−1 with all letters incremented by i+ 1. The only removal between the two
vertical lines is the removal of 2n.

Since the portion before the first vertical line is a facet of ∆̂i, the ordered fish product up
to that point is (1 2i)(2 2i−1) . . . (i i+1). The first block of the middle section has letters
2i+1 . . . 2n−1 since 2n is removed. None of the corresponding transpositions interact with
(1 2i)(2 2i−1) . . . (i i+1), so we can take their ordered product as if the first portion of
the word was not there. This gives the transposition (2i+1 2n). So, the result so far is
(1 2i)(2 2i−1) . . . (i i+1)(2i+1 2n)

The second block of the middle section has letters 2i . . . 2n−1. Taking the ordered fish
product of that block with our result so far, we get (2 2i−1) . . . (i i+1)(2i 2n−1)(1 2n).
Notice that the transposition (1 2n) will be fixed for the remainder of the product and that
the remaining terms are analogous to the result before taking the fish product with the
second block, only indexed to work with the third block in the middle section. By a similar
argument, taking the ordered product of all remaining blocks in the middle section results
in (1 2n)(2 2n−1) . . . (i 2n−i+1)(i+1 2n−i).

Now, we know that the portion of the word after the second vertical line is a facet of
∆̂n−i−1 with all letters incremented by i + 1. Since the letters involved after the second
vertical line are not found in our product so far, we can take their ordered product as
if the rest of the word was not there. This final portion has the ordered fish product
(i+2 2n−i−1)(i+3 2n−i−2) . . . (n n+1).

Hence, our final result is (1 2n) . . . (n n+1) = w0 and thus, F is a facet of ∆̂n.
�

Corollary 3.9. Fn = Cn, where Cn are the Catalan numbers.
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Theorem 3.10. ∆̂′n and ∆̂n have the same number of facets.

As with the previous theorem, in order to show this, we will establish a bijection between
the facets of ∆̂′n and the facets of ∆̂n.
Let F be a facet of ∆̂n. Define ψ(F ) to be the facet F ′ in ∆̂′n given by the following
procedure:

(1) Left-align all but the last letter of each block of Q′n with the blocks of Qn.
(2) Right-align the last letter of each block of Q′n with the blocks of Qn.
(3) For each letter removed by F in Qn, remove the corresponding letter in Q′n
(4) Let F ′ be the set of indices that removes these letters from Q′n.

We define ψ−1(F ′) to be the natural inverse of this map.

Example 3.11. Consider the facet {8, 10, 16, 20, 22} in ∆̂5. To find ψ({8, 10, 16, 20, 22}),
we write Q5 and Q5

′ as follows:

1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 3 4 5 6 7 8 4 5 6 7 5 6
1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 3 4 5 6 7 4 5 6 5

Then, we mark the letters removed by the facet {8, 10, 16, 20, 22} in Q5 and the corresponding
letters in Q5

′.

1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 3 4 5 6 7 8 4 5 6 7 5 6
1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 3 4 5 6 7 4 5 6 5

So ψ({8, 10, 16, 20, 22}) = {8, 9, 15, 18, 20}, which is a facet of ∆̂′5.

For the proof of Theorem 3.10, it now suffices to show that ψ, ψ−1 are well-defined and
always produce facets.

Proof. Let F be a facet in ∆̂n. Let F ′ be the index set in Qn
′ given by ψ(F ). We align the

words Qn and Qn
′ as in the definition of ψ:

1 2 · · · 2n−1 2n 2 3 · · · 2n−2 2n−1 · · · n n+1
1 2 · · · 2n−1 2 3 · · · 2n−2 · · · n

We need to show that F ′ is a facet of ∆̂′n. Notice that it has the appropriate number of
letters to make Qn

′ \ F ′ a reduced expression for w0
′. So, we only need to check that it

evaluates to w0
′.

Choose i for F as in the definition of ϕ for Theorem 3.7. As in the proof of Theorem 3.7,
the following sequences with appropriate removals will evaluate to the same results as Qn \F
and Qn

′ \ F ′ by the Coxeter relations:

1 2 · · · 2i 2 3 · · · 2i−1 · · · i i+1 | 2i+1 · · · 2n−1 2n
1 2 · · · 2i 2 3 · · · 2i−1 · · · i i+1 | 2i+1 · · · 2n−1

2i · · · 2n−2 2n−1 · · · i+2 · · · 2n−i 2n−i+1 i+1 · · · 2n−i−1 2n−i |
2i · · · 2n−2 · · · i+2 · · · 2n−i i+1 · · · 2n−i−1 |

i+2 · · · 2n−i−2 2n−i−1 i+3 · · · 2n−i−3 2n−i−2 · · · n n+1
i+2 · · · 2n−i−2 i+3 · · · 2n−i−3 · · · n
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In the proof of Theorem 3.7, we argued that all of the removals in Qn occur either before
the first vertical line or after the second vertical line, except for 2n. We also argued that the
removals up to the first vertical line give a facet in ∆̂i and thus evaluate to (1 2i) . . . (i i+1).

Since the letters of Qn
′ up to the first vertical line match exactly with the letters in Qn,

the removals given by F ′ will be the same as those given by F . So, the evaluation of Q′n \F ′
up to the vertical line will be (1 2i) . . . (i i+1) as well.

Between the two vertical lines, only 2n, . . . , 2n−i are removed. So, we take the ordered
product with all of the letters in the middle section to get (1 2n−1)(2 2n−2) . . . (i+1 2n−i−1).

Since the letters after the second vertical line don’t interact at all with the result so far,
we only need to verify that they evaluate to (i+2 2n−i−2) . . . (n−1 n+1). We will show this
by induction. We want the result of this section to be exactly w0

′ for the n − i − 1 case,
but with all letters incremented by i+ 1. After the second vertical line, we have Qn and Qn

′

aligned exactly as in the n − i − 1 case, but with all letters incremented by i + 1. Notice
that we do have n − i − 1 removals given by F and F ′ after the second vertical line since
i removals occured before the first vertical line and 2n was removed in the middle section.
Also, in the proof of Theorem 3.7, we argued that F gives a facet of ∆̂n−i−1 in this section.
So, we can repeat this process, breaking this section into three smaller sections as before.
The first two sections will produce the product described above and the third will be shorter.
It is easy to verify that this bijection holds for n = 1, so by induction the letters after the
second vertical line evaluate to (i+2 2n−i−2) . . . (n−1 n+1).

Thus, Qn
′ \ F ′ evaluates to w0

′ and F ′ is a facet of ∆̂n
′. So ψ is well-defined.

The fact that ψ−1 is well-defined follows easily from a similar argument to that given for
Theorem 3.7.

�

Remark 3.12. ∆̂′n and ∆̂n are isomorphic simplicial complexes.

Corollary 3.13. ∆̂′n has Cn facets.

Lemma 3.14. ∆̂n
′ and ∆̂n each have

(
n+1
2

)
vertices.

Proof. From Remark 3.12, it suffices to proof this for ∆̂n. We note that, by Corollary 3.4,
we have at most

(
n+1
2

)
vertices. To show that we have exactly this many, we proceed by

induction. It is clear that this holds for n = 1. Suppose it is true for n. We can construct
a facet of ∆̂n+1 using a facet of ∆̂n in the i = 0 case of the above construction. Any facet
of ∆̂n with the addition of 2(n + 1) gives a facet of ∆̂n+1 and hence we have

(
n+1
2

)
vertices

with index greater than 2(n+1). By lemma 3.5, so we have that 2, 4, . . . , 2(n+1) are also
vertices, and thus we have at least

(
n+1
2

)
+ (n+ 1) =

(
n+2
2

)
vertices. Hence, we have exactly(

n+2
2

)
vertices, completing the proof. �

3.3. Structure of Catalan Subword Complexes. As with many Catalan objects, we
can understand ∆̂n and ∆̂n

′ as the associahedron.

Theorem 3.15. ∆̂n and ∆̂n
′ are the (n−1)-dimensional dual associahedron.

Proof. As before, it suffices to show this for ∆̂n. As in [8],we can characterize the (n−1)-
dimensional dual associahedron as follows:
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• The vertex set consists of internal diagonals in an (n+2)-gon.
• The face set consists of sets of mutually non-crossing diagonals.

Hence, if we can establish a correspondence between our vertices and the internal diagonals,
and our facets and triangulations, we are done.

We label the j-th even-indexed letter in the i-th block of Qn with the diagonal (i, j+i+1).
This labeling can be given recursively, but it is clearer to state explicitly.

We now show that the facets of ∆̂n are precisely the triangulations of an (n+2)-gon,
labeling the vertices as described above.

First, we show that any facet in ∆̂n corresponds to a triangulation. We proceed by
induction.

Let F ∈ ∆̂n be a facet. As in the proof of the Catalan recurrence, we can break F into
a facet F ′ ∈ ∆̂i and F ′′ ∈ ∆̂n−i−1. Now, the 2i vertex in F ′ corresponds to the diagonal
(1, i+2) and the 2(n−i−1) vertex in F ′′ corresponds to the diagonal (i+2, n+2). Now by
the proof of Theorem 3.7, the facet F ′ has vertices in the first i blocks of Qn where the
position in block k is at most 2(i−k+1). Similarly, the facet F ′′ has vertices in the last
n−i−1 blocks of Qn. So, the facets F ′ and F ′′ correspond to diagonals completely contained
in the (i+2)-gon and the (n−i+1)-gon shown below.

n

n+ 1

n+ 2 1

2

i+ 1

i+ 2i+ 3

F ′F ′′

By induction, F ′ and F ′′ each correspond to triangulations, so F must be a triangulation of
the (n+2)-gon.

Now, we show that any triangulation of an (n+2)-gon gives a facet in ∆̂n. We proceed
again by induction. Let T be a triangulation. It must have a triangle containing the edge
(1, n+2). Let the third vertex of that triangle be i+2. As before, split the (n+2)-gon into an
(i+2)-gon with triangulation T ′ and a (n− i− 1)-gon with triangulation T ′′. By induction,

T ′ corresponds to a facet in ∆̂i and T ′′ corresponds to a facet in ∆̂n−i−1. By the proof of
Theorem 3.7, we can build a facet in ∆̂n corresponding to T .

These correspondences are clearly inverses. Thus, our complex and the (n−1)-dimensional
dual associahedron have the same facets and are therefore the same polyhedron. �
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Definition 3.16. For two facets F1 and F2 of ∆̂n, we say that F1 is related to F2 by a right
flip if there exists a vertex k ∈ F1 such that F2 = (F1 \ {k}) ∪ {`} for some ` > k. That is,

we can drop a vertex from F1 and get a new facet F2 of ∆̂n by choosing a new vertex from
later in the word Qn.

Definition 3.17. The flip graph of ∆̂n is the directed graph whose vertices are the facets of
the complex ∆̂n and whose directed edges are those pairs (F1, F2) such that F1 is related to
F2 by a right flip.

It will be convenient to discuss the flip graph in terms of the interpretation of the facets
of ∆̂n as triangulations of an (n + 2)-gon. In this setting, a triangulation T1 is related to a
triangulation T2 by a right flip if there exists a diagonal (i, j) ∈ T1 such that
T2 = (T1 \ {(i, j)}) ∪ (k, `) and i < k, j < `. We will always use the convention that the
smaller vertex of the diagonal is listed first. Using our labeling of the diagonals of an (n+2)-

gon with the vertices of ∆̂n, it is easy to see that this definition and the definition given
above will give the same directed graph.

It is known that the undirected version of this graph gives the vertices and edges of the
associahedron. The directed version of this graph is often known as the Tamari lattice. See
[12],[3] for more information. We will state certain well-known facts about the Tamari lattice

which we can interpret as facts about ∆̂n and ∆̂′n.
In order to better illustrate this graph, we will introduce the following biword representa-

tion of facets

Definition 3.18. The biword

i1 i2 . . . in−1 in
j1 j2 . . . jn−1 jn

refers to the facet of ∆̂(Q,w)n obtained by omitting the 2jthk letter of the ithk block for each
1 ≤ k ≤ n.

Definition 3.19. We will call the diagonal that (i, j) switches with to produce a new tri-
angulation (regardless of whether or not it is a right flip) the alternate diagonal. Call a
diagonal of a triangulation stable if it cannot be obtained from its alternate by a right flip.

Similarly, call a diagonal unstable if it can be obtained by a right flip of its alternate.
Call a triangulation of an n-gon completely stable if all of its diagonals are stable. That

is, it is related to no other triangulations by a right flip. This will be a sink vertex in the
flip graph. Similarly a completely unstable triangulation has all unstable diagonals and will
be a source vertex.

Having established this correspondence, we state the following well-known results without
proof.

Theorem 3.20. The flip graph of ∆̂n has a unique source vertex, corresponding to a com-
pletely unstable triangulation, and a unique sink vertex, corresponding to a completely stable
triangulation.

Theorem 3.21. For any triangulation T , there is a directed path in the flip graph from the
source to T and from T to the sink.
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Figure 1. The flip graph of ∆̂4 given by triangulations of the hexagon
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4. K-Complexes

The following generalization of the discussed complex promises to be a fruitful area of
study. Consider the complex ∆̂(Q,w) for w = 2n 2n−1 . . . 1 and

Q = Qn,k = 1 2 . . . 2n 1 2 . . . 2n . . . 1 2 . . . 2n 2 . . . 2n−1 3 . . . 2n−2 . . . n n+1,

where the sequence 1 2 . . . 2n is repeated k times. The previous section discussed the k = 1
case. We now consider this complex for general k.

Lemma 4.1. The vertex set of ∆̂n,k = ∆̂(Qn,k, 2n . . . 1) is {1, 2, . . . n(n+ 2k−1)} for k ≥ 2.

Proof. Note that we can omit any increasing block and Qn,k will still have as a subword a
copy of Qn,1 and hence a reduced word for 2n 2n−1 . . . 1. The result follows. �

Lemma 4.2. ∆̂n,k has at least
(
n+k−1
k−1

)
· Cn facets.

Proof. For each facet of ∆̂n,1, we can choose any k− 1 of the increasing blocks to completely

omit and use the facet of ∆̂n,1 to get a reduced word in the remaining blocks (which contain
Qn,1 as a subword). The result follows from the observation that each choice of facet and

blocks will give a distinct facet in ∆̂n,k. �

This complex is analogous to one discussed in [2]. We hope to further explore this complex
and its properties in the future.
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