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Abstract

In this paper, we aim to study sequences which are products of facto-
rials and examine the conditions required for them to be integral. Using
the order test, we found necessary and sufficient conditions for these se-
quences to be integral and our study of these conditions led us to study cy-
clotomic polynomials, providing more efficient methods of studying these
sequences.
We undertook this project under the supervision of Prof. Masha Vlasenko
of Trinity College, Dublin, as part of a summer internship program.
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1 Integral Ratios of Factorials

Consider two vectors a ∈ Nk, b ∈ Nl, with a = (a1, a2, . . . , ak) and b =
(b1, b2, . . . , bl). Then define a sequence of rational numbers

tn =
(a1n)! . . . (akn)!

(b1n)! . . . (bln)!
=

k∏
i=1

(ain)!

l∏
j=1

(bjn)!

where n is any positive integer. The subject of this paper is to investigate the
conditions for a and b to be such that the sequence {tn} is integral, i.e tn ∈ Z
for all n ≥ 1
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There are many examples of sequences of this type which will always be integral,
such as

tn =
(2n)!

(n)!(n)!
=

(
2n

n

)
or

tn =
(30n)!

(15n)!(10n)!(5n)!
=

(
30n

15n 10n 5n

)
=

(
30n

5n

)(
25n

10n

)
can both be expressed as a product of binomial coefficients, and will therefore
always take integer values for all n.

However, sequences such as tn = (6n)!n!
(2n)!(2n)!(3n)! cannot be expressed as a product

of binomial coefficients. To see this, consider a product of m binomial coeffi-
cients. There will be m terms in the numerator and 2m in the denominator. If
k of these can be cancelled, we are left with m− k terms in the numerator and
2m−k in the denominator. In this case, we would havem−k = 2 and 2m−k = 3,

which has no solutions in non-negative integers. Hence tn = (6n)!n!
(2n)!(2n)!(3n)! can-

not be the product of binomial coefficients. It can also be shown that it is always
integral, as follows.

2 Criterion of Integrality

Definition: Let p be a prime and n ∈ Z,n 6= 0. The order of n, denoted by
ordp(n), to a prime p is defined as the largest nonnegative integer m such that
pm divides n. For a rational number x = y

z , define ordp(x) := ordp(y)−ordp(z).

Clearly a rational number x ∈ Q is integral if and only if ordp(x) ≥ 0 for all
primes p.

Proposition 2.1

ordp(n!) =

∞∑
k=1

b n
pk
c

Proof There are bnp c integers below n that contribute a factor p. Of these,

b np2 c contribute a second factor; and among those b np3 c contribute a third factor
p, and so on. This will be a finite sum as all terms will be 0 for sufficiently large
k

Note that the order of a product of factorials is additive, so this gives the
condition that for a sequence to always take integer values, the order of the
numerator must be greater than or equal to the order of the denominator for
all primes p and all values of n.
We next provide an alternative proof for a result by Edmund Landau

Definition: Given a sequence tn =

k∏
i=1

(ain)!

l∏
j=1

(bjn)!

, define the Landau function f ,

f : [0, 1]→ Z such that f(x) =
k∑
i=1

baixc −
l∑

j=1

bbxc.
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This function seems to apper for the first time in relation to ratios of factorials
in the paper Sur les conditions de divisibilité d’un produit de factorielles par un
autre, Edmund Landau

Theorem 2.2 (Function Test) A sequence {tn} is integral if and only if,
∀x ∈ [0, 1], f(x) ≥ 0, where f(x) is the Landau function associated with the
sequence.

Proof First suppose f(x) ≥ 0 ∀x ∈ [0, 1]. We will show this implies that tn is
integral.
Consider the expression

ζ =
∑
i

bain
pk
c −

∑
j

bbjn
pk
c

for n, k ∈ N and p a prime. Let yk = n
pk

and xk = {yk}, so that

yk = bykc+ xk, xk ∈ [0, 1)

Thenζ =
∑
i

baibykc+ aixkc −
∑
j

bbjbykc+ bjxkc

=
∑
i

aibykc −
∑
j

bjbykc +
∑
i

baixkc −
∑
j

bbjxkc

= (
∑
i

ai −
∑
j

bj)bykc + f(xk)

Since
∑
i

ai −
∑
j

bj = f(1) ≥ 0 and f(x) ≥ 0,∀x, this implies ζ ≥ 0.

⇒
∑
bain
pk
c −

∑
bbin
pk
c ≥ 0 ∀n, k ∈ N

where p is any prime. Therefore

ordp(tn) =

∞∑
k=1

(
∑
bain
pk
c −

∑
bbin
pk
c) ≥ 0

for all n and p, which implies that the sequence {tn} is integral.
Conversely, suppose tn is intergral. We will show this implies that f(x) ≥ 0 ∀x ∈
[0, 1].
First define L = lcm(a1, ..., ak, b1, ..., bl). Next suppose f(x) < 0 for some x,
implying f(x) < 0 ∀x ∈ ( kL ,

k+1
L ) for some k, as jumps in f(x) can only occur

at x such that aix ∈ Z or bjx ∈ Z, for some iorj, and that can only occur when
x = d

ai
= c

L or x = d
bj

= c
L . Next take p > L to be rpime. Suppose there does

not exist some m, 0 ≤ m ≤ p − 1 such that m
p ∈ [ kL ,

k+1
L ] This means m

p ≤
k
L

and k+1
L ≤ m+1

p . Therefore mL < kp and similarly kp+ p < mL+ L.
⇒ mL < kp < mL+L− p But this implies L− p > 0 ⇒ l > p, a contradiction,
so ∃ m such that f(mp ) < 0.

Note that, as p2 > Lp > amaxp > amaxm ≥ aim and
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p2 > Lp > bmaxp > bmaxm ≥ bjm we must have baim
pk
c = b bjm

pk
c = 0 ∀k ≥ 2.

Henceordp(tm) =
∑
i

baim
p
c−
∑
j

bbjm
p
c =

∑
i

bai
m

p
c−
∑
j

bbj
m

p
c = f(

m

p
) < 0

This implies tm /∈ Z, implying tn is not integral, a contradiction. Therefore we
must have f(x) ≥ 0 ∀ x.
Therefor tn is integral if and only if

∑
ai ≥

∑
bi and f(x) ≥ 0 ∀ x ∈ [0, 1].

3 Some Examples

There are several families of sequences which will always produce integer values.
Sequences which are simply products of binomial coefficients, as were discussed
earlier are trivially integral. It can also be shown that sequences of the general
form

tn =
(2an)!(2bn)!

(an)!(bn)!((a+ b)n)!

will always take integer values, where a and b are any positive integers. This
can also be generalised to sequences with more terms. We will now prove that
the above sequence is always integral, where a and b are positive integers.

Proof The sequence is integral if and only if the associated Landau function is
non-negative. Graphing f(x) = b2axc+ b2bxc− baxc− bbxc− b(a+ b)xc we get

As this is non-negative, our sequence must be integral

4 Jumps of the Landau Function

Graphing the Landau function, we notice that it is a step function and hence
is piecewise constant and right continuous. So, to check if f(x) ≥, it is suffi-
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cient to check that f(x) ≥ 0 at each of the jumps. These jumps occur when
a term in f(x) take a new integer value and so, it is in fact sufficient to check
that f(x) ≥ 0 for all x = i

L where L = lcm(a1, a2, ..., ak, b1, b2, ..., bl) and
i = {0, 1, ..., L}. However, we do not get a jump at each of these points. In this
section our goal is to determine precisely at which of the points i

L these jumps
occur. First, we need to introduce a family of polynomials known as cyclotomic
polynomials.

Definition: A Cyclotomic Polynomial, Φn(x), where n is a positive integer, is
the unique monic polynomial defined by the following formula:

Φn(x) :=
∏

1≤k<n:gcd(k,n)=1

(x− e2πi kn )

Cyclotomic polynomials have the following properties

Proposition 4.1 • Φn(x) has integral coefficients

• Φn(x) is irreducible over Q, that is, it cannot be written as a product of
two polynomials with rational coefficients

• xn − 1 =
∏
d|n

(Φd(x))

Below are the first 7 cyclotomic polynomial:

• Φ1(x) = x− 1

• Φ2(x) = x+ 1

• Φ3(x) = x2 + x+ 1

• Φ4(x) = x2 + 1

• Φ5(x) = x4 + x3 + x2 + x+ 1

• Φ6(x) = x2 − x+ 1

• Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1

Next we define a(x) =
k∏
i=1

(xai − 1) and b(x) =
l∏

j=1

(xbj − 1).

We then define p(x) and q(x) such that p(x)
q(x) = a(x)

b(x) , but p(x) and q(x) have

no common factors. p(x) and q(x) can then be written as a product of cyclotomic
polynomicals. These cyclotomic polynomials have roots at e2πi(αi), 1 ≤ i < s,
and e2πi(βj), 1 ≤ j < t, respectively, with αi, βj ∈ (0, 1] and s ≤ k and t ≤ l.We
call αi and βj the argument of the associated root. We will show that jumps
upward occur exactly at αi and jumps downward occur exactly at βj , leading
to an alternative definition of the Landau function.

Theorem 4.2 Given a sequence {tn}, we have the following identity for the
associated Landau function.

f(x) = #{i : αi ≤ x} −#{j : βj ≤ x}x ∈ [0, 1]

where {αi}, {βj} are defined as above.
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Consider, for example the sequence tn = (9n)!(2n)!
(n)!(4n)!(5n)! . The corresponding func-

tions are given by

a(x) = (x9 − 1)(x2 − 1) = Φ1(x)Φ3(x)Φ9(x)Φ1(x)Φ2(x)

and

b(x) = (x− 1)(x4 − 1)(x5 − 1) = Φ1(x)Φ1(x)Φ2(x)Φ4(x)Φ1(x)Φ5(x)

which gives a(x)
b(x) = p(x)

q(x) implying p(x) = Φ3(x)Φ9(x) and q(x) = Φ1(x)Φ4(x)Φ5(x).

This gives α1 = 1
3 , α2 = 2

3 , α3 = 1
9 , α4 = 2

9 , α5 = 4
9 , α6 = 5

9 , α7 = 7
9 , α8 = 8

9
while β1 = 1, β2 = 1

4 , β3 = 3
4 , β4 = 1

5 , β5 = 2
5 , β6 = 3

5 , β7 = 4
5 , which, as we

can see corresponds to the jumps in the graph below.

This holds in general and we can prove this as follows.

Proof Note that bmc = #{k ∈ N : k ≤m}.
Hence bmxc = #{k : k ≤ mx} = #{ km : k

m ≤ x}.
So f(x) =

∑
baixc −

∑
bbixc =

∑
#{ kai : k

ai
≤ x} −

∑
#{ kbj : k

bj
≤ x}

= #{Roots of a with argument ≤ x} −#{Roots of b with argument ≤ x}
= #{αi ≤ x} −#{βj ≤ x}

This allows us to quickly and easily find the graph corresponding to a sequence
by hand.

5 Reconstructing a Sequence

Another question which arises from our study of these polynomials is if we can
reconstruct a sequence given p(x) and q(x) as products of cyclotomic polynomial.
We will now present an algorithm to do this:
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Definition: Define:max{φa1 , φa2 , φa3 , . . . , φas} = φmax{a1,a2,...,as}

Suppose p(x) =
∏s
i=1 φai and q(x) =

∏t
j=1 φbj Let A0 be the set of φai and B0

the set of φbj . We then proceed with the following algorithm:

1. Let φsi = max{φi : φi ∈ Ai ∪Bi}
If φsi ∈ Ai, let ai+1 = s
If φsi ∈ Bi, let bi+1 = s

2. Let Ci = {φd : d | si, 0 < d < si}
If φsi ∈ Ai :, let Ai+1 = Ai \ {φs}. Let Bi+1 = Bi ∪ Ci.
If φsi ∈ Bi :, let Ai+1 = Ai ∪ Ci. Let Bi+1 = Bi \ {φs} .

3. If | Ai+1 | + | Bi+1 |> 0, then repeat. Else, end.

Note that this algorithm will terminate, as si is decreasing and when si =
1, |Ci| = 0 and so |Ai|+ |Bi| is strictly decreasing and must eventually become
0. We then have two sequences {ai}, {bi} and can cancel any common values,
giving us a, b and tn.

Let us illustrate this algorithm with and example. For example,consider
p(x) = φ6 and q(x) = φ1φ2 Then A0 = {φ6} and B0 = {φ1, φ2} and φs0 = φ6.
So we get a1 = 6 and C0 = {φ1, φ2φ3}
This gives A1 = {∅} and B1 = {φ1, φ1, phi2, φ2, φ3}. So φs1 = φ3 and we have
b1 = 3 and C1 = {φ1}
This give A2 = {φ1} and B2 = {φ1, φ1, φ2, φ2}. Repeating this process we
find a1 = 6, a2 = 1, a3 = 1, a4 = 1 and b1 = 3, b2 = 2, b3 = 2, b4 = 1, b5 =1.
Cancelling common terms, we get that the corresponding sequence is given be

tn = (6n)!(n)!
(3n)!(2n)!(2n)!

The existence of this algorithm further cements the relationship between our
sequences and cyclotomic polynomials, implying there may be a condition on
p(x) and q(x) to test if the corresponding sequence is integral.

6 Remarks

On completing this project we had determined some necessary and sufficient
conditions for such sequences to be integral and have developed efficient methods
for testing sequences, We created a new proof of Landau’s function. as well as
finding an alternative formulation of the Landau function from our study of
cyclotomic polynomials. Were we to pursue this research further we would
investigate the conditions on the associated products of cyclotomic polynomials
for a sequence to be integral. We would also try and identify other families of
integer sequences as were discussed previously.
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