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Lecture 1

1.1 The algebra of periods

When first constructing the complex numbers, we normally start with the monoid of natural num-
bers

N = {1, 2, 3, . . .}

which we complete into the ring of integers Z, and then take the field of fractions in order to obtain
the rational numbers Q. From there we have two routes to the complex numbers.

Q Q̄

R C

⊂
⊂ ⊂

⊂

We may first take the topological completion to obtain the reals R and then the algebraic closure
to obtain the complex numbers C, or we may first take the algebraic closure to obtain the field of
algebraic numbers

Q̄ := {z ∈ C | ∃a0, a1, , . . . , an ∈ Q such that anz
n + · · ·+ a0 = 0}

and then take the topological completion to obtain C once again.A complex number which is not
algebraic is called transcendental.

The set of algebraic numbers is much more structured than that of the reals. The set of algebraic
numbers is countable, unlike the reals. The field Q(α) is finite dimensional over Q for all algebraic
α, but not all real α, and we have all the machinery coming from Galois theory to help us answer
questions in algebraic numbers that we lack for more general complex numbers. However, many
important mathematical constants (π, e, γ), are transcendental.

The set of periods provides an intermediate set between the algebraic numbers and the complex
numbers. It is countable, but contains many transcendental numbers and other numbers of interest,
such as π, ζ(2n + 1), values of L-functions and hypergeometric functions (up to powers of π).
Furthermore, the theory of motives offers us a notion of Galois theory for periods, giving us a
significant amount of structure on an expansive class of numbers.

1.1.1 First definitions and examples

The following definitions are due to Kontsevich and Zagier [10], and will serve as our initial defini-
tions of a period.
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Definition 1.1.1. A (naive) period is a complex number whose real and imaginary parts are given
by absolutely convergent integrals of rational functions with rational coefficients over domains in
Rn given by polynomial inequalities with rational coefficients.

Example 1.1.2. The set of periods contains all rational and algebraic numbers

2 =

∫ 2

0
dx

√
2 =

∫
2x2≤1

dx

along with π and logarithms of rational numbers

π =

∫
x2+y1≤1

dxdy

ln 3 =

∫ 3

1

dx

x

and values of the zeta function

ζ(3) =

∫
0≤x≤y≤z

dxdydz

(1− x)yz

We denote by P the set of periods. We also remark that we can replace rational functions having
rational coefficients by algebraic functions having algebraic coefficients in our above definition,
simply by introducing more variables as needed.

Example 1.1.3. Consider the integral

I =

∫ √
3

0

√
2
√
1− xdx.

By introducing new variables, we can rewrite this as an integral of a rational function over a
rationally defined domain.

I =

∫
0≤x
x2≤3

∫
2y2≤1

∫
0≤z

z2≤1−x

dxdydz

While the above of periods is elementary and accessible, it will often be convenient to work
with a seemingly more general, but equivalent, defintion.

Definition 1.1.4. Let X be a smooth, quasiprojective variety defined over Q̄,, Y a subvariety
defined over Q̄, and ω an algebraic n-form on X that vanishes on Y (again defined over Q̄). Let C
a singular n-form on X(C), with boundary contained in Y . Then the integral

∫
C ω is a period.

Example 1.1.5. Taking X = Gm = A1 \ {0}, Y = ∅, ω = dz
z , and C a circle around 0, we obtain

2πi =

∫
|z|=1

dz

z

as a period. Similarly, taking X = Gm, Y = {1, 2}, ω = dz
z and C the straight line path from 1 to

2, we obtain

ln 2 =

∫ 2

1

dz

z

as a period.
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Unlike the algebraic numbers and complex numbers, periods do not form a field. They do,
however form a ring, with an obvious Q-algebra structure.

Theorem 1.1.6. The set of periods P is a ring,

Proof. Suppose we have two periods given by the data (X1, Y1, ω1, C1), and X2, Y2, ω2, C2). Then,
letting πi : X1 ×X2 → Xi be the standard projection, we can write the product(∫

C1

ω1

)(∫
C2

ω2

)
=

∫
C1×C2

π∗
1ω1π

∗
2ω2

as a integral on X1 ×X2, over a chain with boundary in Y1 × Y2.
To show the sum is again a period, note that the integral corresponding to (A1, {0, 1}, dz, [0, 1])

gives period 1. We may multiply our periods by this in order to assume that X1 and X2 exist
in ambient spaces of the same dimension. As such, we can form their disjoint union X1

⊔
X2, on

which we have the differential form ω1 + ω2 and chain C1
⊔
C2 with boundary in Y1

⊔
Y2. Then∫

C1

ω1 +

∫
C2

ω2 =

∫
C1

⊔
C2

ω1 + ω2.

Remark 1.1.7. The ring P is often called the set of effective periods, and the ring of periods is
defined to be P[ 1π ]. This will be a useful convention to adopt when discussing motivic periods, and
enables us to consider a wider range of numbers as periods, such as special values of L-functions,
or values of the hypergeometric function

2F1(a, b; c;x) :=
∑
n≥0

(a)n(b)n
(c)n

xn

n!

which lie in 1
πP for a, b, c ∈ Q, x ∈ Q̄, |x| ≤ 1. We may at some point use period to refer to both

effective periods and elements of P[ 1π ], but it should be clear from context.

In general it is difficult to tell whether a number is a period or not. Some numbers can be shown
to be periods, despite non having an obvious integral representation, such that the logarithmic
Mahler measure

µ(P ) :=

∫
|xi|=1

log |P (x1, . . . , xn)|
dx1
x1

· · · dxn
xn

for P ∈ Q[x±1
1 , . . . , x±1

n ]

where µ(P ) ∈ P [7]. Similarly, while

Γ(s) :=

∫ ∞

0
ts−1e−tdt

is in general not expected to be a period, for t = p
q ∈ Q, Γ(pq )

q ∈ P.

On the flip side, it is also quite difficult to show a number is not a period. While e, γ, 1
π are

conjectured to be non-periods, there are no known natural examples of non-periods.
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Remark 1.1.8. While there are no known natural examples of non-periods, Yoshinaga constructs
an explicit example of a computable non-period [11] by using the fact that periods are somehow
‘easily’ computable.

While it is, in general, difficult to determine whether a given number is a period, it is conjec-
turally easy to check whether two periods are equal.

Conjecture 1.1.9 (Kontsevich-Zagier [10]). If two periods are equal, they can be related by a
chain of equalities using

1. Linearity: ∫
C
ω1 + ω2 =

∫
C
ω1 +

∫
C
ω2∫

C1⊔C2

ω =

∫
C1

ω +

∫
C2

ω

2. Change of variables: For any invertible f : X1 → X2, ω an n-form on X2, C an n-chain on
X1 ∫

f∗(C)
ω =

∫
C
f∗(ω)

3. Stokes’ theorem: ∫
C
dω =

∫
δC

ω

Example 1.1.10. We can use these relations to prove ζ(2) :=
∑

n≥1
1
n2 is equal to π2

6 . Let

I :=

∫ 1

0

∫ 1

0

1

1− xy

dxdy
√
xy

By expanding this as a geometric series and integrating term by term, we find

I =
∑
n≥0

∫ 1

0

∫ 1

0
xn−1/2yn−1/2dxdy

=
∑
n≥0

1

(n+ 1/2)2

= 4
∑
n≥0

1

(2n+ 1)2

= 4

(
ζ(2)−

∑
n>0

1

(2n)2

)
= 4ζ(2)− ζ(2) = 3ζ(2).

However, if we make the change of variables

x = ξ2
1 + η2

1 + ξ2
, y = η2

1 + xi2

1 + η2
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we can show

I = 4

∫ 1

0

∫ 1

0

dξ

1 + ξ2
dη

1 + η2

= 2

∫ ∞

0

∫ ∞

0

dξ

1 + ξ2
dη

1 + η2

=
π2

2

Thus, 3ζ(2) = π2

2 and the result follows.

1.2 Multiple zeta values

1.2.1 Values of the Riemann zeta function

Recall the definition of the Riemann zeta function ζ(s) :=
∑

0<n
1
ns . This series is defined for real

part of s greater than 1. While it can be meromorhically continued to C, we are more interested
in its values at positive integers. The values at even positive integers are well understood.

Theorem 1.2.1 (Euler). Define the Bernoulli numbers by the series
∑

n≥0Bn
xn

n! = x
ex−1 . These

are rational numbers and we have

ζ(2n) =
−B2n

2(2n!
(2πi)2n

for all n > 0.

Proof. There are a number of proof methods, using integrals, Fourier analysis, etc. We will prove
this using generating series. Recall that

sinπx

πx
=
∏
n>0

(
1− x2

n2

)
.

Taking logarithmic derivatives, we find that

π cotπx =
1

x
+
∑
n>0

1

x+ n
+

1

x− n

Expanding the right hand side using geometric series, we find that

πi
eπix + e−πix

eπix − e−πix
=

1

x
−
∑
n>0

2ζ(2n)x2n−1

We can then rewrite the left hand side as

πi
e2πix + 1

e2πix − 1
= πi

(
1 +

2

e2πix − 1

)
= πi+

1

x

2πix

e2πix − 1

=
1

x
+
∑
n>0

B2n(2πi)
2n

(2n!)
x2n−1,

and so the result follows.
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The values at odd integers are significantly less well understood. They are conjectured to be
transcendental, and there is the standard conjecture about their algebraic independences.

Conjecture 1.2.2. The collection {π2, ζ(3), ζ(5), ζ(7), . . .} are algebraically independent, i.e. they
are no polynomial relations with rational coefficients among any subset thereof.

However little is known, even about the irrationality of ζ(2n+ 1).

Theorem 1.2.3 (Apery [2]). ζ(3) is irrational.

Theorem 1.2.4 (Zudilin [12]). At least one of ζ(5), ζ(7), ζ(9), ζ(11) is irrational.

Theorem 1.2.5 (Ball-Rivoal, [3]). The dimension of the Q-vector space ⟨1, ζ(3), . . . , ζ(2n + 1)⟩Q
is bounded below by 1

3 log(2n+ 1).

While there have been some improvements to the lower bound of Ball-Rivoal, and some more
elementary proofs of Zudilin-type results, this is largely the current state of knowledge. In general,
it is unclear how to progress. However, if we consider the problem motivically, replacing the
zeta values by formal analogues, satisfying only relations of “geometric” origin, all the standard
conjectures become trivial. Unfortunately, the motivic proof is insufficient to prove much at the
level of numbers, it still provides evidence that we should be optimistic.

1.2.2 The algebra of multiple zeta values

While values of the Riemann zeta function are conjectured to be algebraically independent, if we
instead consider multiple zeta values, we obtain a rich algebraic structure.

Definition 1.2.6. For a sequence of positive integers (k1, . . . , kr) with kr > 1, we define the
associated multiple zeta value (MZV) to be the multisum

ζ(k1, . . . , kr) :=
∑

0<n1<···<nr

1

nk1
1 . . . nkr

r

.

We define the weight of a multiple zeta value to be k1 + · · ·+ kr and the depth to be r.

Remark 1.2.7. Note that some authors us the reverse convention, requiring k1 > 1 and summing
over n1 > · · ·nr > 0. This produces the same set of numbers, but indexed with reversed tuples.

Lemma 1.2.8. For kr > 1, ζ(k1, . . . , kr) converges.

Proof. Note that it suffices to prove this for ζ(1, 1, . . . , 1, 2). Using the fact that∑
0<m<n

1

m
≤ 1 + log(m)

As such, we have the following upper bound

ζ(1, 1, . . . , 2) =
∑

0<n1<···<nr

1

n1 . . . nr−1n2
r

≤
∑
0<n

1

n2
(1 + log(n))r−1

which clearly converges.

7



Proposition 1.2.9. The Q-vector space generated by MZVs is a Q-algebra.

We delay the proof of this until the following subsection. However, as a Q-algebra, we find
many relations among MZVs.

Example 1.2.10.

ζ(1, 2) = ζ(3)

ζ(2)ζ(3) = ζ(2, 3) + ζ(3, 2) + ζ(5)

ζ(2)2 = 4ζ(1, 3) + 2ζ(2, 2)

= ζ(2, 2) + ζ(4)

Note that, while these relations are not homogeneous for depth, they are for weight.

Conjecture 1.2.11. The algebra of MZVs is weight graded.

This is a challenging conjecture already: verifying it would imply the linear independence of all
single zeta values. However, it again is motivically simple. Another open problem is to describe
all relations among multiple zeta values (or even all motivic relations). There are a number of
conjecturally complete candidates here:

• The (extended) double shuffle relations - a natural combinatorial double algebra structure

• The associator relations - a set of relations with connections to conformal field theory and
knot theory

• The confluence relations - a set of relations arising from limits of polylogarithms

MZVs and their relations are not just interesting from a purely number theoretic point of view.
They arise naturally as amplitudes in CFT and QFT [5], their relations can be used to construct
universal knot invariants [4], and they are related to a group scheme through which the absolute
Galois group factors [8].

We have a number of standard conjectures and results, some of which we will prove in the
following lectures.

Conjecture 1.2.12. MZVs are graded by weight, and, letting dn be the dimension of the weight
n graded piece, we have ∑

n

≥ 0dnx
n =

1

1− x2 − x3
.

Proposition 1.2.13. Let Dn be the coefficient of xn in 1
1−x2−x3 . Then Dn is an upper bound for

the dimension of the weight n graded piece of the algebra of MZVs.

Conjecture 1.2.14. MZVs of the form ζ(k1, . . . , kr), ki ∈ {2, 3} form a Q-basis for the algebra of
MZVs.

Proposition 1.2.15. MZVs of the form ζ(k1, . . . , kr), ki ∈ {2, 3} form a Q-spanning set for the
algebra of MZVs.
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1.2.3 The double shuffle relations

The double shuffle relations are a simple set of relations coming from a double algebra structure
on the Q-vector space of MZVs. it consists of two sets of relations - the shuffle relations and the
stuffle relations. We first consider the stuffle relations

Example 1.2.16. Consider the product ζ(2)ζ(3). But dividing up the domain of summation, we
find

ζ(2)ζ(3) =
∑
0<m

∑
0<n

1

m2n3

=
∑

0<m<n

+
∑

0<n<m

+
∑

0<m=n

1

m2n3

= ζ(2, 3) + ζ(3, 2) + ζ(5).

By similarly dividing up the domain of summation, we obtain a decomposition of any product
of MZVs as a sum. The precise definition may be given recursively as follows.

Definition 1.2.17. Let Q⟨y1, y2, . . .⟩ be the Q-vector space of noncommutative monomials in vari-
ables {yn}n>0. We define the stuffle product by

1 ⋆ w = w ⋆ 1 = w

yiu ⋆ yjv = yi(u ⋆ yjv) + yj(yiu ⋆ v) + yi+j(u ⋆ v)

for any w, u, v a monomial in {yn}, and extended by linearity.

Theorem 1.2.18. Defining ζ : Q⟨y1, y2, . . .⟩ → C to be the Q-linear extension of

ζ(yk1 . . . ykr) := ζ(k1, . . . , kr)

we have that
ζ(u)ζ(v) = ζ(u ⋆ v).

To discuss the shuffle relations, we must first write MZVs as iterated integrals. We will give a
more precise definition later in the course.

Theorem 1.2.19. For an MZV ζ(k1, . . . , kr) of weight N , we may write this as the iterated integral∫
0<t1<···<tN<1

dt1
1− t1

dt2
t2

· · · dtk1
tk1

dtk1+1

1− tk1+1

dtk1+2

tk1+2
· · ·

dtk1+···kr−1+1

1− tk1+···kr−1+1

dtk1+···kr−1+2

tk1+···kr−1+2
· · · dtN

tN

where the integrand consists of a dt
1−t followed by k1−1 copies of dt

t , a
dt
1−t followed by k2−1 copies

of dt
t , . . ..
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Example 1.2.20. Consider the iterated integral∫
0<x<y<z<1

dx

1− x

dy

1− y

dz

z
=
∑
m>0

∫
0<y<z<1

ym

m

dy

1− y

dz

z

=
∑
m>0

∑
n>0

1

m

zm+n

m+ n

dz

z

=
∑

m,n>0

1

m

1

(m+ n)2

=
∑

0 < m < n
1

mn2
= ζ(1, 2).

The shuffle relations are given by subdivision of the domain of integration of a product.

Example 1.2.21. Consider the product ζ(2)2. We can write

ζ(2)2 =

∫
0<x1<x2<1

dx1dx2
(1− x1)x2

∫
0<y1<y2<1

dy1dy2
(1− y1)y2

=

∫
0<x1<x2<y1<y2<1

+

∫
0<x1<y1<x2<y2<1

+

∫
0<x1<y1<y2<x2<1

+

∫
0<y1<x1<x2<y2<1

+

∫
0<y1<x1<y2<x2<1

+

∫
0<y1<y2<x1<x2<1

=ζ(2, 2) + ζ(1, 3) + ζ(1, 3) + ζ(1, 3) + ζ(1, 3) + ζ(2, 2)

=2ζ(2, 2) + 4ζ(1, 3).

Definition 1.2.22. Let Q⟨e0e1⟩ be the Q-vector space of noncommutative monomials in variables
{e0, e1}. We define the stuffle product by

1�w = w�1 = w

xu ⋆ yv = x(u�yv) + y(xu�v)

for any w, u, v a monomial in {e0, e1}, and extended by linearity.

Theorem 1.2.23. Defining ζ : e1Q⟨e0, e1⟩e0 → C to be the Q-linear extension of the map sending
w1w2 . . . wn to the iterated integral whose ith differential form is dt

1−t if wi = e1 and dt
t otherwise.

Then
ζ(u)ζ(v) = ζ(u�v).

1.3 Exercises

1. Justify (non-rigorously) the equivalence of definitions 1.1.1 and 1.1.4.

2. Using beta integrals, prove Γ(p/q)q ∈ P. Relate π as the area of the unit circle to π = Γ(1/2)2.

3. Prove that MZVs are given by the iterated integral as claimed.

4. Convince yourself that the recursive definition of the stuffle and shuffle relations correspond
to the illustrated subdivision of domains of summation/integration.

5. Prove in two ways ζ(1, 2) = ζ(3).
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Lecture 2

2.1 Periods from cohomology

In this section, we give yet another definition of a period, this time in terms of a compariso between
cohomology theories of varieties. This will allow us to define motivic periods in terms of Deligne
motives [6]

2.1.1 Betti cohomology

Let M be a topological space. We define a singular n-chain to be a continuous map

σ : ∆n
st → M

where

∆n
st := {(t0, . . . , tn) ∈ Rn |

n∑
i=0

ti, tj ≥ 0}

is the standard n-dimensional simplex. Let Cn(M) be the free Q-vector space generated by (singu-
lar) n-chains. The collection {Cn(M)}n≥0 forms a chain complex when equipped with the differ-
entials

∂n : Cn(M) → Cn−1(M)

defined as follows. Let δni : ∆n−1
st → ∆n

st be the ith face map

(t0, . . . , tn−1) 7→ (t0, . . . , ti−1, 0, ti, . . . , tn−1).

We then define

∂n(σ) :=

n∑
i=0

(−1)i(σ ◦ δni ).

We then define the ith Betti homology group by

Hi(M,Q) := ker∂n/im∂n+1

Example 2.1.1. Let M = C×. Then 0-chains consist of linear combinations of points, 1-chains
consist of linear combinations of paths, and 2-chains consist of linear combinations of simple con-
nected, bounded 2 dimensional open sets (viewed as a subspace of R2). One can easily check

H0(M,Q) ∼= Q
H1(M,Q) = Q[γ0]

Hn(M,Q) = 0 for n ≥ 2

11



where γ0 is a closed loop around 0.

Remark 2.1.2. One often speaks of Betti cohomology, which is defined to be the dual space to
Betti homology:

H i(M,Q) := HomQ(Hi(M,Q),Q).

We can also define a more general notion of relative homology. Let N ⊂ M be a subspace of
M and let ι : N → M be the inclusion map. We define the complex of relation chains by

Cn(M,N) := Cn(M)⊕ Cn−1(N)

equipped with the differential

∂n(a, b) := (∂na− ι⋆b,−∂n−1b).

We define the relative homology

Hn(M,N) := ker∂n/im∂n+1.

Remark 2.1.3. One can show that this complex is quasi-isomorphic to the complex C•(M)/C•(N)
equipped with the differential induced by that of C•(M). As such, we may think of elements of
Hn(M,N) as represented by n-chains with boundary in N .

Example 2.1.4. Taking M = C×, N = {1, 2}, we find

H1(M,N) = Q[γ0]⊕Q[γ1,2]

Hn(M,N) = 0 for all n ≥ 1

where γ0 is a loop around 0, and γ1,2 is the straight line path from 1 to 2.

2.1.2 de Rham cohomology

In order to keep things simple, we will only consider the case where X is a smooth, affine variety
over Q. The general case follows upon replacing Ω1

X with the corresponding sheaf of differentials
and taking hypercohomology.

Assume X = Spec(A) for a Q-algebra A = Q[x1, . . . , xn]/(f1, . . . , fm). We define the A-module
of differentials

Ω1
X := (

n⊕
i=1

Adxi)/(

m⊕
j=1

Adfj)

where df :=
∑n

i=1
∂f
∂xi

dxi for any f ∈ A. We further define Ωp
X :=

∧pΩ1
X , and Ω0

X := A.
This forms a chain complex with differential given by

dk(fdxi1 ∧ · · · ∧ dxik := df ∧ dxi1 ∧ · · · ∧ dxik

and we define the de Rham cohomology as the Q-vector space given by

Hk
dR(X) := kerdk/imdk−1.

When it is clear from context, we will suppress the subscripts and merely write d for all differentials.
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Example 2.1.5. Let X = Gm be the algebraic variety with R points given by the units of R, i.e.
X = Spec(Q[t, t−1]). The de Rham complex is then given by

Q[t, t−1] → Q[t, t−1]dt

Having d(tn) = ntn−1dt, we find

H0
dR(X) ∼= Q

H1
dR(X) = Q

[
dt

t

]
Hn

dR(X) = 0 for all n ≥ 2.

Just like the case of Betti cohomology, we can define a relative version of de Rham cohomology,
elements of which may be viewed as closed differential forms whose restriction to a subvariety is
exact. To be precise, for ι : Y → X a subvariety of X we define

Ωk(X,Y ) := Ωk(X)⊕ Ωk−1(Y )

and define the differential
dk(α, β) := (dα, ι⋆α− dβ).

The relative cohomology groups are then defined by

Hk
dR(X,Y ) := kerdk/imdk−1.

Example 2.1.6. Let X = Gm, and Y = {1, 2}. The de Rham complex is then given by

Q[t, t−1] → Q[t, t−1]dt⊕Q⊕Q

where d(f) = (df, f(1), f(2)). This map is injective, and so H0
dR(X,Y ) = 0, and Hn

dR(X,Y ) = 0
for all n ≥ 2. To compute imd0, note that it is spanned by

{(ntn−1dt, 1, 2n}n ̸=0 ∪ {(0, 1, 1)}.

The kernel of d1 is Q[t, t−1]⊕Q⊕Q, and so one can readily verify that

H1
dR(X,Y ) = Q[(dt/t, 0, 0)]⊕Q[(0, 1, 0)].

One can furthermore check that [(0, 1, 0)] = [(dt, 0, 0)].

2.1.3 The comparison isomorphism

Theorem 2.1.7 (Grothendieck [1]). For X a smooth variety over Q, there exists a canonical
isomorphism

compdR,B : Hk
dR(X)⊗Q C → Hk

B(X(C),Q)⊗Q C.

For affine X, this is the isomorphism induced by the perfect pairing

Hk
dR(X)⊗Q Hk

B(X(C),Q) → C,

ω ⊗ σ∨ 7→
∫
σ
ω.
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There is also a relative version of this isomorphism

compdR,B : Hk
dR(X,Y )⊗Q C → Hk

B(X(C), Y (C),Q)⊗Q C.

given on affine X by integration:

(ωX , ωY )⊗ (σ∨
X , σ∨

Y ) 7→
∫
σX

ωX +

∫
σY

ωY

Definition 2.1.8. The set of periods is the image of this pairing as (X,Y ) vary across smooth
varieties. A period matrix is given by the matrix of compdR,B in a chosen basis.

Example 2.1.9. Let X = Gm. Recall that H1
dR = Q

[
dt
t

]
and H1

RQ[γ∨0 ]. The period matrix is
given by (∫

γ0

dt

t

)
= (2πi) .

Example 2.1.10. Let X = Gm, Y = {1, 2}. The period matrix is given by(
1 log 2
0 2πi

)
We can think of these periods as being encoded by tuples (X,Y, ω, γ), where ω ∈ H•

dR(X,Y ),
γ ∈ H•(X(C), Y (C),Q) via the following results

Lemma 2.1.11. A period (X,Y, ω, γ) depends only on the equivalences classes of ω and γ in
(co)homology.

Proof. We leave the case of relative homology as an exercise to the reader. Suppose [ω1] = [ω2] ∈
Hk

dR(X). Then there exists ω+ ∈ Hk−1
dR (X) such that dω+ = ω1 − ω2. Hence∫

γ
ω1 −

∫
γ
ω2 =

∫
γ
dω+ =

∫
∂γ

ω+ = 0

as ∂γ = 0. Similarly, if [γ1] = [γ2], there exists γ+ such that γ1 − γ2 = ∂γ+. Hence∫
γ1

ω −
∫
γ2

ω =

∫
∂γ+

ω =

∫
γ+

dω = 0

as dω = 0.

Theorem 2.1.12. The set of periods of Definition 2.1.8 is equal to the set of naive periods of
Definition 1.1.1.

Proof. The reader may find the proof of this result under Theorem 12.2.1 in [9].

Remark 2.1.13. Huber’s proof in fact shows that all periods may be obtains as integrals of forms
of top degree, and that Y may be assumed to be a normal crossings divisor.
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2.2 Exercises

1. Verify the cohomology computations given in the examples.

2. Compute the first Betti cohomology group of the elliptic curve E : y2 = x(x− 1)(x− λ).

3. Compute the first de Rham cohomology group of E and hence the period matrix associated
to your chosen basis

4. Proof Lemma 2.1.11 for relative cohomology groups.

15



Lecture 3

3.1 Neutral Tannakian categories

In this section, we will run through a series of definitions leading up to that of a Tannakian category.
However, due to time constraints in the lecture, definitions and results on affine group schemes will
be delayed to the next chapter.

3.1.1 Rigid tensor categories

Definition 3.1.1. A ⊗-category is a category C with a bifunctor ⊗ : C × C → C. We call a
⊗-category ACU if the following properties hold:

1. There exists a functorial isomorphism ΨX,Y,Z : X ⊗ (Y ⊗ Z) → (X ⊗ Y )⊗ Z.

2. There exists a functorial isomorphism ΦX,Y : X ⊗ Y → Y ⊗X.

3. There exists an object 1 ∈ ObC and functorial isomorphisms

1⊗X ∼= X ∼= X ⊗ 1

satisfying the MacLane coherence conditions e.g. the isomorphism

X ⊗ (Y ⊗ (Z ⊗W )) ∼= ((X ⊗ Y )⊗ Z)⊗W

should be independent of the order of rebracketing:

ΨX⊗Y,Z,W ◦ΨX,Y,Z⊗W = ΨX,Y,Z ⊗ idW ◦ΨX,Y⊗Z,W ◦ idX ⊗ΨY,Z,W

Definition 3.1.2. A functor F : C → D of ⊗-categories is called a ⊗-functor if there exist
functorial isomorphisms

cX,Y : F (X)⊗ F (Y ) → F (X ⊗ Y ).

F is called ACU if it is compatible with the associativity and commutativity isomorphisms in the
obvious way, and there exists an isomorphism

aF : 1D ∼= F (1C)

satisfying the obvious compatibilities.
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Definition 3.1.3. A ⊗-morphism between ⊗-functors µ : F → G is a natural transformation such
that

µX⊗Y ◦ cX,Y = dX,Y ◦ (µX ⊗ µY )

for all X,Y objects of C. If F,G are ACU, we call µ unitial if aG = µ1 ◦ aF . We denote the set of
(unital) ⊗-morphism from F to G by Hom⊗,(1)(F,G).

Definition 3.1.4. We has a ⊗-category C has Hom-objects if for all X,Y ∈ ObC there exists an
object Hom(X,Y ) and an isomorphism, functorial in Z

Hom(Z ⊗X,Y ) ∼= Home(Z,Hom(X,Y )).

Denote by evX,Y the morphism corresponding to idHom(X,Y ) under this isomorphism.

Note Hom is unique only up to isomorphism. Furthermore note that, to every g : Z⊗X → Y ,
there exists a unique f : Z → Hom(X,Y ) such that g = evX,Y ◦(f ⊗ idX).

Note also that we must have

Hom(X,Y ) ∼= Hom(1⊗X,Y ) ∼= Hom(1,Hom(X,Y )).

We may think of elements of the last set as “points” of Hom(X,Y ), and so Hom-objects define
some sort of inclusion of Hom-sets into our category.

Indeed, in any category C which contains its Hom-sets, these may be taken as Hom-objects.
For example, in ModR, R a commutative ring, we have that HomR(X,Y ) is an R-module and

HomR(Z ⊗X,Y ) ∼= HomR(Z,HomR(X,Y ).

We furthemore have that evX,Y (f ⊗ x) = f(x), hence calling it an evaluation morphism.

Definition 3.1.5. We define the dual of X to be the object X∨ := Hom(X,⊮).

The easiest example of a dual object to keep in mind is that of the dual vector space V ∨ :=
Homk(V, k) in V eck.

Lemma 3.1.6. For every object X in a ⊗-category C with Hom-objects,

Hom(⊮, X) ∼= X.

Proof. The Hom object Hom(⊮, X) is defined up to isomorphism by the condition

Hom(Z,Hom(1, X)) ∼= Hom(Z ⊗ 1, X)

functorially for all Z. However, Hom(Z ⊗ 1) ∼= Hom(Z,X), functorially in X. Hence X is another
representing object of Hom(1, X), and is thus isomorphic.

Lemma 3.1.7. For all X,Y objects of a ⊗-category C with Hom-objects, there exists a morphism

X∨ ⊗ Y → Hom(X,Y )

Proof. We have that

Hom(X∨⊗Y,Hom(X,Y ) ∼= Hom(X∨⊗Y ⊗X,Y ) ∼= Hom(Hom(X,1)⊗X⊗Hom(1, Y )⊗1,1⊗Y )

The latter Hom-set contains evX ⊗ ev1,Y , and hence the former is non-empty.
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We next define a rigid category. First, we require a lemma.

Lemma 3.1.8. Let C be a ⊗-category with Hom-objects. Then there exist canonical morphisms

iX : X → X∨∨

τX,Y,X′,Y ′ : Hom(X,Y )⊗Hom(X ′, Y ′) → Hom(X ⊗X ′, Y ⊗ Y ′)

Proof. Let iX be the morphism corresponding to evX under the isomorphim

Hom(X,X∨∨) ∼= Hom(X ⊗X∨,1) ∼= Hom(X∨ ⊗X,1)

and let τX,Y,X′,Y ′ be the morphism corresponding to evX,Y ⊗ evX′,Y ′ under the isomorphism

Hom(Hom(X,Y )⊗Hom(X ′, Y ′),Hom(X ⊗X ′, Y ⊗ Y ′)
∼=Hom(Hom(X,Y )⊗Hom(X ′, Y ′)⊗X ⊗X ′, Y ⊗ Y ′)
∼=Hom(Hom(X,Y )⊗X ⊗Hom(X ′, Y ′)⊗X ′, Y ⊗ Y ′)

Definition 3.1.9. A rigid category is an ACU ⊗-category C with Hom-objects such that the
morphisms iX , τX,Y,X′,Y ′ of Lemma 3.1.8 are isomorphisms. A rigid functor is a unital ⊗-functor
between rigid categories.

Lemma 3.1.10. For all X,Y objects of a rigid category C, there exists an isomorphism

X∨ ⊗ Y → Hom(X,Y )

Proof. It suffices to show that there is an isomorphism, functorial in Z,

Hom(Z ⊗X,Y ) ∼= Hom(Z,X∨ ⊗ Y )

We have that

Hom(Z,X∨ ⊗ Y ) ∼= Hom(Z,Hom(X1)⊗Hom(1, Y ))
∼= Hom(Z,Hom(X ⊗ 1,1⊗ Y ))

using that τX,1,1,Y is an isomorphism. But this is functorially isomorphic to

Hom(Z,Hom(X,Y ) ∼= Hom(Z ⊗X,Y ).

Hence, the result follows.

Using this isomorphism, one may reformulate the definition of a rigid category in terms of
properties of dual objects.

Proposition 3.1.11. Let C and D be rigid categories and F,G : C → D be rigid functors. Then

F (HomC(X,Y )) ∼= HomD(F (X), F (Y ))

and
Hom⊗,1(F,G) = Isom⊗(F,G).
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Proof. To show the first isomorphism, it is sufficient to show that F (X∨) ∼= F (X)∨, by Lemma
3.1.10. One can show that X∨ is determined uniquely up to isomorphism as a pair (Y, ev : Y ⊗X →
1) for which we can find an ϵ : 1 → X ⊗ Y such that

X ∼= 1⊗X
ϵ⊗id−−−→ (X ⊗ Y )⊗X ∼= X ⊗ (Y ⊗X)

id⊗ ev−−−−→ X

and
Y ∼= Y ⊗ 1

id⊗ϵ−−−→ Y ⊗ (X ⊗ Y ) ∼= (Y ⊗X)⊗ Y
ev⊗id−−−−→ Y

are the identity maps. This property is clearly preserved by a rigid functor, and hence F preserves
duals.

To see that every unitial ⊗-morphism of rigid functors µ is an isomorphism, note first that any
morphism f : X → Y in a rigid category induces a transpose isomorphism tf : Y ∨ → X∨. We
define λ : G → F to be the unique morphism such that

F (X∨) G(X∨)

F (X)∨ G(X)∨

∼

µX∨

∼
tλX

λ can easily be checked to be inverse to µ.

Examples of rigid categories include V eck,ModR, A −Alg,Repk(G) for k a field, R a com-
mutative ring, A a k-algebra, G a group or affine group scheme.

Remark 3.1.12. In a rigid category, we have an morphism

Hom(X,X) ∼= X∨ ⊗X
evX−−→ 1

Applyin the functor Hom(1,−), we obtain a trace morphism

TrX : End(X) → End(1)

satisfying
TrX⊗Y (f ⊗ f) = TrX(f) TrY (g).

We can use the trace functor to define a rank, rank(X) := TrX(idX). This gives the usual rank in
categories of modules, representations, vector spaces, etc.

Definition 3.1.13. An abelian ⊗-category is a category that is both an ACU ⊗-category and an
abelian abelian, such that ⊗ is a biadditive functor.

Remark 3.1.14. If C is an abelian tensor category, then R := End(1) is a ring that acts via
X ∼= 1 ⊗ X, on each object of C. The action of R commutes with endomorphism of X and the
category C is R-linear, as is the tensor product ⊗.

Proposition 3.1.15. An abelian category that is rigid is an abelian tensor category. Specifically, ⊗
is biadditive, commutes with direct and inverse limits in each variable, and is exact in each variable.

Proof. The functors −⊗ Y and Hom(Y,−) are, by definition, adjoint. Thus −⊗ Y commutes with
direct limits and is additive. They are also adjoint in the oppositive category, and so it commutes
with inverse limits. The result then follows.
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We call such a category a rigid abelian category. We shall not prove the following, but merely
mention it as a method of determining when a category is a rigid abelian category.

Proposition 3.1.16. Let k be a field, and let C be a k-linear abelian category equippied with
a k-bilinear functor ⊗ : C × C → C. Suppose there exists a faithful, exact, k-linear functor
F : C → V eck and functorial isomorphisms Ψ, Φ as in Definition 3.1.1, with the following
properties:

1. F ◦ ⊗ = ⊗ ◦ (F × F ),

2. F ◦ΨX,Y,Z is the standard associativity isomorphism in V eck,

3. F ◦ ΦX,Y is the standard commutativity isomorphism in V eck,

4. There exists an object 1 in C and functorial isomorphisms

1⊗X ∼= X ∼= X ⊗ 1

such that k ∼= End(1) and dimF (1).

5. If dimF (X) = 1 , there exists an object X−1 such that X ⊗X−1 ∼= 1.

Then C is a rigid abelian category.

This proposition can be used to show may categories to be rigid abelian. In particular, this
shows Repk(G) is rigid abelian for any affine group scheme G over k. An example of a rigid
abelian category not of this form may be given by the category of Z/2Z-graded vector spaces where
ΦV,W (v ⊗ w) := (−1)|v||w|w ⊗ v. One can easily check that this is a rigid abelian category, but
cannot be a category of representations, as the rank map is not non-negative.

3.1.2 Interlude: Tannaka duality

In order to break up a long series of definitions, and to help motivate why we have made such
definitions, we will now discuss the end goal of this chapter and the following chapter: Tannaka
duality.

Theorem 3.1.17. Let C be a rigid abelian category over k such that k = End(1) and equipped
with an exact, faithful, k-linear functor - called a fibre functor - ω : C → V eck. Then

• Let R be a commutative k-algebra, and ϕR : V eck → ModR be the functor V → V ⊗k R.
We define Aut⊗(ω) to be the functor

k −Alg → Grp

R 7→ Aut⊗(ϕR ◦ ω, ϕR ◦ ω).

Then Aut⊗(ω) is represented by an affine group scheme G.

• C → Repk(G) is an equivalence of categories.

We call such a category a neutral Tannakian category. We can see many of the properties of
the group reflected in those of the category.
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Proposition 3.1.18. 1. G is finite iff there exists X ∈ Repk(G) such that every object in
Repk(G) is isomorphic to a subquotient of some X⊗n.

2. G is algebraic iff there exists X ∈ Repk(G) such that every object is isomorphic to a subquo-
tient of P (X,X∨) where P ∈ N[x, y].

3. If f : G → H is a homomorphism of group schemes, and ωf is the corresponding functor
Repk(H) → Repk(G), then f is faithfully flat iff ωf is fully faithful and every subobject of
ωf (X) is isomorphic to the image of a subobject of X.

4. f is a closed immersion iff every object of Repk(G) is isomorphic to a subquotient of an
object ωf (X).

5. If k has characteristic 0, G is connected iff, for every X on which G acts non-trivialliy, the
tensor subcategory generated by X is not stable under ⊗.

6. If G is a connected affine group scheme over a field of characteristic 0, then Repk(G) is
semisimle iff G is pro-reductive.

Example 3.1.19. Let C be the category of Z-graded vector spaces over k with graded maps.
Objects are collections V = (V n) of k-vector spaces V n such that

⊕
n∈Z V

n is finite dimensional,
and morphisms are collections of k-linear maps (Ln : V n → Wn). We claim the group scheme
Aut⊗(ω) is isomorphic to the multiplicative group Gm. An element of Aut⊗(ω)(R) is a collection
of R-linear isomorphisms {ηX : ω(X)⊗R → ω(X)⊗R}X∈ObC such that

ηX⊗Y = ηX ⊗ ηY

and for every α : X → Y in C
ηY ◦ ω(α) = ωα ◦ ηY .

Denote by [n] the graded vector space (V n) with V n = k, V m = 0 for all m ̸= n, and let
α : [n] → W be the map taking 1 7→ w0 ∈ Wn. We must then have

ηW (w0) = ω(α)η[n](1)

As η[n] is an isomorphism R → R, we must have η[n](1) = λn ∈ R×. Then, by R-linearity, we get

etaW (w0) = λnw0.

Note that λn is independent of α, w0, and even W . Hence, we must have, for any collection
V = (V n), any n, and any v ∈ V n, we have

ηV (v) = λnv

for a collection λn determined by {η[n]}. As we have [m]⊗ [n] ∼= [m+ n], we must also have

λm+n = λmλn.

Hence
λn = λn

1

for any Z. Every element η ∈ Aut⊗(ω)(R) can be identified with a unique element of R×, and this
correspondence is clearly an isomorphism.
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Lecture 4

4.1 Affine group schemes

As mentioned in the last lecture, every (neutral) Tannakian category is equivalent to the category
of representations of an affine group scheme, though we didn’t quite have time to define an affine
group scheme in detail. It will be useful to us later to discuss some properites and examples now.
We will also prove a partial result on Tannaka duality.

Definition 4.1.1. Let k be a field. A Hopf algebra over k is a (unital) k-algebra A with three
additional k-algebra morphisms

1. A coproduct ∆ : A → A⊗A,

2. A counit ϵ : A → k,

3. An antipode S : A → A

satisfying

(id⊗∆) ◦∆ = (∆⊗ id)∆,

id = (ϵ⊗ id) ◦∆,

µ ◦ (S ⊗ id) ◦Delta = η ◦ ϵ,

where µ : A⊗A → A is multiplication, and η : k → A sends x to x1A.

Definition 4.1.2. An affine group scheme over k is a functor G = Spec(A), for A a Hopf algebra.

G : Algk → Grp

R 7→ G(R) = Hom(A,R)

Remark 4.1.3. We may alternatively define an affine group scheme G over k as a functor

G : Algk → Set

equipped with a natural transformations

µ : G⊗G → G

ι : G → G

1 : Hom(k,−) → G

satisfying axioms describing multiplication, inversion, and identity, as in a group. We leave the
equivalence of these definitions as an exercise to the reader.
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Remark 4.1.4. If A is finitely generated, we call G an algebraic affine group scheme.

Proposition 4.1.5. The category of commutative Hopf algebas over k is equivalent to the category
of affine group schemes

This proposition tells us that A is uniquely determined up to isomorphism by Spec(A). In
particular, given an affine group scheme G, we may recover A as O(G), the ring of regular functions
on G.

Example 4.1.6. Let Ga = Spec(Q[t]). We may equip Q[t] with the structure of a Hopf algebra by
defining

∆(t) : = t⊗ 1 + 1⊗ t

ϵ(f(t)) : = f(0)

(Sf)(t) : = f(−t)

Let R be a Q-algebra. Then
Ga(R) = Hom(Q[t], R) = R

as sets, since a morphism is determined by where we map t. Let r, s ∈ Ga(R). Then, r · s is defined
by

(r · s)(f(t)) = (r ⊗ s)(∆(f(t))).

Since an element of Ga(R) is determined by its action on t, we have

(r · s)(t) = (r ⊗ s)(t⊗ 1 + 1⊗ t) = r(t) + s(t)

and so r · s = r+ s. The identity element of G(R) is determined by ϵ(t) = 0 to be 0, and S induces
inversion, so r−1 = −r. Hence Ga(R) is the addition group underlying R.

Example 4.1.7. Let Gm = Spec(Q[t, t−1]), and equip Q[t, t−1] with the structure of a Hopf algebra
via

∆(t) : = t⊗ t

ϵ((f(t)) : = f(1)

(Sf)(t) : = f(t−1)

One may easily verify that Gm(R) = R×, the multiplicative group underlying R.

We may similarly obtain the functor that gives the group of roots of unity of of order N in R
by µN = Spec(Q[t]/(tN − 1)), the general linear group GLn = Spec(Q[ai,j , t]/(det(ai,j)t− 1)), and
so on. It is also worth noting that a finite group H may be viewed as affine group schemes via
G = Spec(Q[H]), equipping the group ring with the sturcture of a Hopf algebra via

∆eη : =
∑
ρσ=η

eρ ⊗ eσ,

ϵeη : = δη,id,

S(eη) : = eη−1 .

With this defintion G(R) = H for all R without nilpotent elements
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4.1.1 Comodules over coalgebras

As in the case of finite groups, it is often easier to think of an affine group scheme in terms of its
representations.

Definition 4.1.8. A representation of an affine group scheme G is a k vector space V and a natural
transformation

η : G → EndV

where EndV (R) := EndR−Mod(V ⊗R), and such that ηR is a homomorphism for every R.

However, we more often think of represenations of an affine group scheme in terms of comodules
over the corresponding Hopf algebra.

Definition 4.1.9. A coalgebra over a field k is a k-vector space C equipped with maps (∆, ϵ)
satisying

(id⊗∆) ◦∆ = (∆⊗ id)∆,

id = (ϵ⊗ id) ◦∆.

Definition 4.1.10. Let C be a k-coalgebra. A (right) comodule over C is a vector space V and a
linear map ρ : V → V ⊗ C such that

(id⊗ϵ) ◦ ρ = id,

(id⊗∆) ◦ ρ = (ρ⊗ id) ◦ ρ.

Proposition 4.1.11. Let G = Spec(A) be an affine group scheme and let V be a vector space.
There exists a (canonical) bijection between represenations of G on V and comodule structures over
A on V .

Proof. We will give two proofs of this claim. The first is more abstract, but establishes a canonical
bijection. The second is more explicit, but depends on a choice of basis.

Let η : G → EndV be a natural transformation. Then ηA maps idA ∈ G(A) = Hom(A,A) is
mapped to an element of EndV (A) = End(V ⊗ A). Let us denote by ρ the restriction of ηA(idA)
to a map V → V ⊗A. Let g be an element of G(R).

Note that ρ uniquely determines ηA(idA) as the unique A-linear extension of ρ to V ⊗A. This
in turn uniquely determines ηR(g), as the unique R-linear map such that

ηR(g) ◦ (idV ⊗g) = (idV ⊗g) ◦ ηA(a).

Hence η is uniquely determined by ρ. The same argument applies to any k-linear map ρ : V →
V ⊗ A, establishing a bijection between natural transformations η : G → EndV and k-linear maps
ρ : V → V ⊗A.

It remains to show that η defines a representation if and only if ρ defines a comodule. First
consider the condition that ηk(1G(k)) = idV⊗k. As 1G(k) = ϵ, this is equivalent to

(idV ⊗epsilon) ◦ ρ = id

which is precisely the co-unit condition. Next consider the condition ηR(g)ηR(h) = ηR(gh). By
definition, ηR(gh) acts on V by

(id⊗(g ⊗ h)) ◦ (id⊗∆) ◦ ρ
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while ηR(g)ηR(h) acts on V by
(id⊗(g ⊗ h)) ◦ (ρ⊗ id) ◦ ρ.

These are equal for all g, h if and only if the comodule coassociativity condition holds. Hence η is
a represenation if and only if ρ is a comodule.

For the second proof, let (ei)i∈I be a basis for V, allowing us to identify EndV with the matrix
algebra GL|I|, and natural transformations

η : G → EndV

with matrices with entries in A (viewed as functions on G via evaluation):

ηR(g) = (ηi,j,R(g))textforg ∈ G(R).

We require that ηR be a homomorphism, which occurs if and only if

ηi,j,R(gh) =
∑
k∈I

ηi,k,R(g)ηk,j,R(h)

for all g, h ∈ G(R), and ηi,j,R(1) = δi,j .
Now, consider a k-linear map ρ : V → V ⊗ A. This is equivalent to giving a matrix (ηi,j) of

elements of A:
ρ(ej) =

∑
i∈I

ei ⊗ ηi,j .

We have that ρ defines a comodule if and only if

∆(ηi,j) =
∑
k∈I

ηi,k ⊗ ηk,j

and ϵ(ηi,j) = δi,j .
Then since

Delta(ηi,j,R)(g ⊗ h) = (ηi,j,R)(gh)

, and ∑
k∈I

(ηi,k,R ⊗ ηk,j,R)(g ⊗ h) =
∑
k∈I

ηi,k,R(g)ηk,j,R(h),

we see that η is a homomorphism if and only if ρ defines a comodule. Hence the result follows.

Proposition 4.1.12. An affine group scheme is algebraic if and only if it has a faithful finite
dimensional represenation. Furthermore, every affine group scheme may be obtained as an inverse
limit of algebraic group schemes in which the projection maps are surjective.

4.1.2 The category of represenations

Let G be an affine group scheme over k, Repk(G) the category of representations of G, and ω :
Repk(G) → Veck be the forgetful functor. One may show that Repk(G) is a Tannakian category.

For R a k-algebra, define

Aut⊗(ω)(R) := Isom⊗(ϕR ◦ ω, ϕR ◦ ω),

where phiR : Veck → R−Mod is given by ϕR(V ) := V ⊗R. An element of Aut⊗(ω)(R) consists of
a family (λX) of R-linear automorphisms of X ⊗R such that
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1. λX⊗Y = λX ⊗ λY ,

2. λk = idR,

3. λY ◦ (α⊗ idR) = (α⊗ idR) ◦ λX

for any morphism of G-representations α : X → Y .
Note that elements g ∈ G(R) define elements of Aut⊗(ω)(R), and hence we have a map G →

Aut⊗(ω)(R).

Theorem 4.1.13. The map G → Aut⊗(ω)(R) is an isomorphism.

Proof. We will only sketch the proof. Let X ∈ Repk(G), and let CX be the strictly full subcategory
of objects isomorphism to subquotients of objects of the form P (X,X∨), where P (x, y) ∈ N[x, y],
and

(
∑
i,j

ai,jx
iyj)(X,X∨) :=

⊕
i,j

(X⊗iX∨⊗j)⊕ai,j .

The map λ → λX identifies Aut⊗(ω|CX
)(R) with a subgroup of GL(X ⊗ R). Take GX to be the

image of G in GL(X ⊗−). This defines a closed subgroup and

GX(R) ⊂ Aut⊗(ω|CX
)(R) ⊂ GL(X ⊗R).

If V ∈ CX , and t ∈ V is fixed by G, then

α : k → V

a 7→ at

is a G-equivariant map. Hence

λV (t⊗ 1) = (α⊗ id)(λk(1)) = t⊗ 1

and hence Aut⊗(ωCX
)(R) i the subgroup of GL(X ⊗R) fixing all tensors in representations of GX

fixed by GX . By an 1982 result due to Deligne [?], this implies GX
∼= Aut⊗(ωCX

).
Next note that if X ′ = X ⊕ Y , then CX ⊂ CX′ , and the maps GX′ → GX and Aut⊗(ωCX′ ) →

Aut⊗(ωCX
) commute with the isomorphisms. Taking inverse limits, we find that G ∼= Aut⊗(ω).
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Lecture 5

5.1 Mixed Hodge structures

We now must define a mixed Hodge structure. In order to motivate this, let us briefly discuss
how we will eventually define a motivic period. Recall that we defined (formal) periods as a tuple
(X,Y, γ, ω), with γ ∈ Hk

B(X,Y )∨ and ω ∈ Hk
dR(X,Y ). We will define, for an appropriate choice

of category of motives, and a pair (ω1, ω2) of fiber functors, a motivic period as a triple (M,γ, η)
for M a motive, γ ∈ ω1(M)∨, η ∈ ω2(M). As cohomology should factor through the category
of motives, we should be able to think of ω1 as H•

B, and ω2 as H•
dR. We will eventually take a

simplified version of Delignes category of realisations as our category of motives. To be precise, we
will take a motive as a triple (VB, VdR, c) consisting of two Q-vector spaces and an isomorphism

c : VdR ⊗ C → VB ⊗ C.

However, this is a bit too general to discuss periods in any real detail. For example, taking the
cohomology of elliptic curves, we obtain isomorphic motives, despite different elliptic curves have
different periods in general. As such, we need to impose some sort of conditions to make this triple
somehow “geometric” in order to obtain a meaningful theory of periods.

On the Betti side, it will suffice to introduce a real Frobenius F∞, arising from complex conju-
gation. On the deRham side, we need a mixed Hodge structure. This arises very naturally in ge-
ometry. Let M be a complex projective manifold of dimension n, and let Hp,q(M) ⊂ Hp+q

d R(M,C)
be spanned by classes locallly of the form∑

I,J⊂{1,...,n}
|I|=p, |J |=q

fI,J(z1, . . . , n)dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq .

Theorem 5.1.1 (Hodge). There is a canonical decomposition Hn(M,Q)⊗C ∼=
⊕

p+q=nH
p,q(M),

and Hp,q(M) ∼= Hq,p(M).

Furthermore, Hodge’s theorem holds for any smooth projective variety over Q. As such, we
might be tempted to define a Hodge structure as a vector space with a decomposition as in Hodge’s
theorem, but the following definition is more convenient.

Definition 5.1.2. A pure Hodge structure over Q of weight n is a triple (VB, (VdR, F
•), c) where

VB, VdR are Q-vector spaces, F • is an exhaustive decreasing filtration (called the Hodge filtration),
and c is an isomorphism VdR ⊗ C → VB ⊗ C such that the induced filtration on VC := VB ⊗ C
satisfies VC = F pVC ⊕ Fn+1−pVC for all p.
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Remark 5.1.3. Note that by defining F pHn(M,C) := ⊕i≥pH
i,n−i, we may construct a Hodge

structure from the Hodge decomposition. We similarly get a Hodge decomposition from a Hodge
structure by defining V p,q

C = F pVC ∩ F qVC.

Definition 5.1.4. A morphism of pure Hodge structures is a pair of Q-linear maps (fB, fdR) :
(VB, VdR) → (WB,WdR) such that fdr(F

pVdr) ⊂ F pWdR, and (fB ⊗ id) ◦ cV = cW ◦ (fdR ⊗ id).

Remark 5.1.5. We leave it as an exercise to the reader to prove that every morphism of pure
Hodge structures of different weights is zero.

Example 5.1.6. A Hodge-Tate structure of weight −2n is defined to be

Q(n) = (Q, (Q, F •), cn)

where

F−nQ := Q
F 1−nQ := 0

cn(1⊗ z) = 1⊗ z

(2πi)n

We call Q(1) the Tate structure, and Q(−1) is sometimes called the Lefschetz structure. As an
exercise, we suggest the reader prove

Q(n) ∼= Q(1)⊗n for n ≥ 0

and
Q(−1) ∼= Q(1)∨ = Hom(Q(1),Q(0)).

Example 5.1.7. The cohomologyH1(Gm) = (H1
B(Gm), (H1

dR(Gm), F •), c) is isomorphic to Q(−1),
despite Gm not being a smooth projective variety. The Hodge filtration is given by

F 1H1
dR(Gm) = H1

dR(Gm)

F 2H1
dR(Gm) = 0

and c([dzz ]) = 2πi[γ0]. One method of proving this is to consider the Mayer-Vietoris sequence

H1(A1)⊕H1(A1) → H1(Gm) → H2(P1) → H2(A1)⊕H2(A1)

from which we can conclude H1(Gm) ∼= H2(P1).

Remark 5.1.8. It will occasionally be useful to consider the Tate twist of a Hodge structure
H(n) := H ⊗Q(n), i.e.

H(n) = (HB, (HdR, F
•+n), (2πi)−nc)

However, for general varieties, a pure Hodge structure is too restrictive. Instead, we can define
a mixed Hodge structure.

Theorem 5.1.9 (Deligne). The (relative) cohomology of a quasiprojective vareity X has a mixed
Hodge structure.
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Definition 5.1.10. A Q-mixed Hodge structure (MHS) is a triple

V = ((VB,W
B
• ), (VdR,W

dR
• , F •), c)

where VB, VdR, are Q-vector spaces; WB
• , W dR

• are exhaustive increasing filtrations; F • is an
exhaustive, decreasing filtration; c is an isomorphism such that

c(W dR
n VdR ⊗ C) = WB

n VB ⊗ C

and
grWm V = (grW

B

m VB, (gr
W dR

m VdR, F
•), c)

is a pure Hodge structure of weight m.

Definition 5.1.11. A morphism of MHS is a pair of Q-linear maps (fB, fdR) : (VB, VdR) →
(UB, UdR) such that fB is a morphism of filtered vector spaces, fdR is a morphism of bifiltered
vector spaces, and (fB ⊗ id) ◦ cV = cW ◦ (fdR ⊗ id).

Theorem 5.1.12 (Deligne). The category of MHSs over Q is Tannakian with two fiber functors
ωB(V ) = VB and ωdR(V ) = VdR.

Example 5.1.13. We call a MHS V a MHS of Tate type if grW2m+1V = 0 and grW2mV ∼= Q(−m)⊕nm

for some non-negative integers nm. Let X = P \ S, for S a finite set of points. Then, similarly to
H1(Gm), we find H1(X) ∼= Q(−1)|S|−1.

Example 5.1.14. Let X = Gm, Y = {1, 2}. We have a long exact sequence in relative cohomology

0 → H0({2}) → H1(Gm, {1, 2}) → H1(Gm) → 0.

AsH0({2}) ∼= Q(0), andH1(Gm) ∼= Q(−1), we can construct a MHS onH1(Gm, {1, 2}) by demand-
ing this be an exact sequence of MHS, which determines the filtrations on V = H1(Gm, {1, 2}). In
particular

W •
i V• = W •

i (Q(0)•) for i ≤ 2

W •
2 V• = V•

and

F 0VdR = VdR

F 1VdR = Q(−1)dR

F 2VdR = 0
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