
MMG710: Fourier Analysis - Exercise Session

Problems LP1 2023, Gothenburg University

Adam Keilthy

The following is a collection of all the problems covered in exercise sessions as
part of the course. Each session’s problem set is separated by a short reminder
on notation used in the following problems.

Notation

Let f : R → C be a 1-periodic, continuous, Riemann integrable function, and
denote by cf : Z → C its Fourier coefficients

cf (n) :=

∫ 1
2

−1
2

f(x)e−2πinxdx.

Problems

Problem 1. Suppose we have a (uniformly convergent) series expansion

f(x) =
∑
n∈Z

cne
2πinx.

Write this as a trigonometric series

f(x) =
∑
n≥0

An cos(2πnx) +B sin(2πnx).

Can we compute {An, Bn} directly from f?

Problem 2. Show the following implications:

1. f even ⇒ cf (n) = cf (−n) ⇔ Bf (n) = 0,

2. f odd ⇒ cf (n) = −cf (−n) ⇔ Af (n) = 0,

3. f : R → R ⇒ cf (n) = cf (−n) ⇔ Af (n), Bf (n) ∈ R,

4. f : R → iR ⇒ cf (n) = −cf (−n) ⇔ Af (n), Bf (n) ∈ iR.

In particular, note that if f is even and real valued, so is cf , and if f is odd and
real valued, cf is odd and purely imaginary. If the Fourier series of f converges,
the above implications become equivalences.
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Problem 3. 1. Compute the infinite sum S =
∑∞

m=1
1

1+m2 . Consider the
Fourier series of the 1-periodic function f such that f(x) = cosh(2πx) for
|x| ≤ 1

2 .

2. Compute Sα =
∑∞

m=1
1

α2+m2 for α ∈ R>0.

Problem 4. Write f(x) = x, |x| ≤ 1
2 as a sine-series.

Write f(x) = |x| |x| ≤ 1
2 as a cosine series. (Do not worry about proving

convergence here. The goal is just to do the computation.)

Problem 5. Let 0 < α ≤ 1 and suppose f : R → C is a continuous 1-periodic
function such that

|f(x)− f(y)| ≤ Cα|x− y|α

for some constant Cα and all x, y ∈ R.
Prove

|cf (n)| ≤
2−(1+α)Cα

|m|α
.

(Hint: consider the Fourier coefficients of gm(x) := f(x)− f(x− 1
2m ).)

Notation

Let f : R → C be a 1-periodic, continuous, Riemann integrable function, and
denote by cf : Z → C its Fourier coefficients

cf (n) :=

∫ 1
2

−1
2

f(x)e−2πinxdx.

Problems

Problem 6. Let c0, c1, . . . , cn, . . . be a sequence of complex numbers and denote
by sn and σn the partial and Cesàro sums respectively:

sn :=

n∑
k=0

ck,

σn :=
1

n

n−1∑
k=0

sk.

1. Prove that if sn → s, then σn → s,

2. , Is cn = n Cesàro summable? That is, does limn→∞ σn exist?

3. Is cn = (−1)nn Cesàro summable?

Problem 7. Suppose that
∑

n∈Z |cf (n)| ≤ ∞. Show that

∑
n∈Z

|cf (n)|2 =

∫ 1
2

−1
2

|f(x)|2dx.
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Problem 8. Using the above result, conclude
∑∞

m=1
1

m4 = π4

90 . (Hint: recall
the Fourier expansion of x2)

Problem 9 (2021, Exam 1, Q1). Which of the following hold for f(x) = x3?

1.
∑

m∈Z cf (m) = 0,

2.
∑

m∈Z cf (m)(−1)m = 1
8 ,

3.
∑

m∈Z cf (m)(−1)m = −1
8 ,

4.
∑

m∈Z cf (m)2 = 1
26·7 ,

5.
∑

m∈Z cf (m)2 = −1
26·7 .

Problem 10 (2020, Exam 1, Q8). Let f : R → C be a continuous 1-periodic
function with absolutely summable Fourier coefficients. Show that

| 1
n

n−1∑
k=0

f(
k

n
)−

∫ 1

0

f(x)dx| ≤
∑
m ̸=0

|cf (mn)|

for all n ≥ 1. (Hint: Consider An(m) := 1
n

∑n−1
k=0 e

2πikm
n . Show that An(m) is

non-zero if and only if n divides m.)

Notation

Let f : R → C be a 1-periodic, continuous, Riemann integrable function, and
denote by cf : Z → C its Fourier coefficients

cf (n) :=

∫ 1
2

− 1
2

f(x)e−2πinxdx.

For f, g, h : R → C continuous, Riemann integrable 1-periodic functions,
define their (circular) convolution to be

(f ∗ g)(x) :=
∫ 1

2

- 12

f(y)g(x− y)dy.

Problems

Problem 11. Denote by f : R → R the 1-periodic function

f(x) =
∑
n∈Z

1

1 + (x+ n)2

Compute the limit

I := lim
q→0+

q ·
∞∑

n=1

|cf (n)|q
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You may use without proof the relation∫ ∞

−∞

e−2πixξdx

1 + x2
= πe−2π|ξ|.

Problem 12. Show the following properties of convolution (assume f, g, h are
continuous):

1. f ∗ g = g ∗ f ,

2. f ∗ (g ∗ h) = (f ∗ g) ∗ h,

3. cf∗g(n) = cf (n)cg(n)

Convolution often makes functions “nicer”. For example, f ∗ g is continuous
for any Riemann integrable 1-periodic functions. This is easy to prove if f and
g are continuous, but is not obvious in general.

We get a particularly nice property if f is continuously differentiable.

Problem 13. Suppose f is a continuously differentiable 1-periodic function and
g is a Riemann integrable 1-periodic function. Show that

d

dx
(f ∗ g)(x) = (f ′ ∗ g)(x).

Note that this implies that if f is smooth, then so if f ∗ g for any 1-periodic
Riemann integrable g.

Problem 14. Let f, g : (− 1
2 ,

1
2 ] → R be given by

f(x) = xe−x2

g(x) =
1

1 + |x|3

and extend these 1-periodically to functions on R. Which of the following are
true?

1. (f ∗ g)(0) = 0,

2. (f ∗ g)(0) =
√
π,

3.
∫ 1

2

- 12
(f ∗ g)(x)dx = 0.

When proving results about continuity of integrals of discontinuous func-
tions, it may be helpful to approximate these functions by continuous counter-
parts. In the case of step functions, we often want to approximate them by
compactly supported smooth functions, i.e. smooth functions ϕ : R → R for
which

{x ∈ R | ϕ(x) ̸= 0}
is compact. Such approximations are called bump functions, and convolution
with a bump function can provide a valuable smooth approximation to a non-
smooth function.
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Problem 15. Prove that the function ϕ : R → R

ϕ(x) :=

{
e
− 1

1−x2 if x ∈ (−1, 1)

0 otherwise

is a compactly supported smooth function.

Notation

Let f : R → C be a 1-periodic, continuous, Riemann integrable function, and
denote by cf : Z → C its Fourier coefficients

cf (n) :=

∫ 1
2

− 1
2

f(x)e−2πinxdx.

Problems

Problem 16. Let a ∈ R \Z be a fixed real number. By considering the Fourier
series of (the 1-periodic extension of)

f(x) := cos(2πax) x ∈ [−1

2
,
1

2
]

show that

π cot(πa) = lim
N→∞

N∑
n=−N

1

n+ a
.

Problem 17. The Bessel functions Jn : R → R are defined by the relation

eit sin(2πx) =
∑
n∈Z

Jn(t)e
2πinx

for all x ∈ R. Compute

I(t) :=

∞∑
n=−∞

|Jn(t)|2.

Problem 18. Find a continuous 1-periodic solution to the ordinary differential
equation

f ′′(x)− f(x) =
1

1− 1
2e

2πix
.

Problem 19. Find Riemann integrable f(x) on the interval [0, 12 ] such that the
solution to the heat equation

∂tu(x, t) = ∂2xu(x, t) x ∈ (0,
1

2
), t > 0

u(0, t) = u(
1

2
, t) = 0 t ≥ 0,

u(x, 0) = f(x) x ∈ [0,
1

2
],
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satisfies u(x, 3) = 5 sin(2πx)− sin(14πx).

Problem 20. Let c, κ, L be positive real numbers. Suppose we are given f, g :
[0, L] → R such that their odd 2L-periodic extensions are twice continuously
differentiable. Let u : [0, L] × R≥0 → R denote the solution to the following
wave equation with damping

∂2t u(x, t) = c2∂2xu(x, t)− 2κ∂tu(x, t) x ∈ (0, L), t > 0,

u(0, t) = u(L, t) = 0 t ≥ 0,

u(x, 0) = f(x) x ∈ [0, L],

∂tu(x, 0) = g(x) x ∈ [0, L].

Show that if κ < cπ
L , then limt→∞ u(x, t) = 0 uniformly on [0, L].

Notation

Let V be a complex vector space equipped with an inner product

⟨·, ·⟩ : V × V → C.

Denote by ∥v∥2 := ⟨v, v⟩ the associated norm. Recall that a set of elements
{e1, . . . , en} is called orthogonal if ⟨ei, ej⟩ = 0 for all i ̸= j. A set of elements
{e1, . . . , en} is called orthonormal if it is orthogonal and ∥ei∥ = 1 for every i.

0.1 Problems

Problem 21. Prove that for any x, y ∈ V , we have

⟨x, y⟩ = 1

4

((
∥x+ y∥2 − ∥x− y∥2

)
+ i

(
∥x+ iy∥2 − ∥x− iy∥2

)
Hence prove that the inner product on

ℓ2 := {(an)n≥1 |
∑
n≥1

|an|2 ≤ ∞}

given by

⟨(an), (bn)⟩ =
∑
n≥1

anbn

always converges and is therefore well defined.

Problem 22. Let V be the vector space of continuous functions on [−1, 1] and
define an inner product on V by

⟨f, g⟩ :=
∫ 1

−1

f(x)g(x)|x| 12 dx.

Let g1(x) = 1, g2(x) = x, g3(x) = x2 − 3
7 . Which of the following are true?
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1. g1, g2, g3 are orthogonal,

2. g1, g2, g3 are orthonormal,

3. ∥g1 + g2 + g3∥2 > 3
2 ,

4. ∥g1 + g2 + g3∥2 ≤ 3
2

5. ⟨g1, g3⟩ = 1.

Problem 23. Let V be a complex vector space with inner product ⟨·, ·⟩. Suppose
(xn)n≥1 is a sequence of elements of V and suppose there exists an element x
such that

lim
n→∞

∥xn − x∥ → 0.

Show that limn→∞ ∥xn∥ = ∥x∥. Does the reverse implication hold?

Problem 24. Show that∑
n≥1

e−n sin(nx)

n

2

≤ e−2

1− e−2

∑
n≥1

sin2(nx)

n2

for every x ∈ R. Does there exist any non-zero x ∈ R such that this is an
equality?

Problem 25. Which of the following inequalities hold?

1. |
∫ 1

0
sin(2πx)√

1+x2
dx| ≤

√
π

2
√
2
,

2. |
∫ 1

0
sin(2πx)√

1+x2
dx| >

√
π

2
√
2
,

3. 1
2π

∫ 2π

0
eix sin θdθ ≥ 1 for any x ̸= 0,

4.
∑

n≥1
cos(n3)

2n ≤
(∑

n≥1
cos2(n3)

2n

) 1
2

,

5.
∑

n≥0
1

2n+3n ≥ 2.

Notation

Let f : R → C be a 1-periodic, continuous, Riemann integrable function, and
denote by cf : Z → C its Fourier coefficients

cf (n) :=

∫ 1
2

− 1
2

f(x)e−2πinxdx.

Let V be a complex vector space equipped with an inner product

⟨·, ·⟩ : V × V → C.

Denote by ∥v∥2 := ⟨v, v⟩ the associated norm. Recall that a set of elements
{e1, . . . , en} is called orthogonal if ⟨ei, ej⟩ = 0 for all i ̸= j. A set of elements
{e1, . . . , en} is called orthonormal if it is orthogonal and ∥ei∥ = 1 for every i.
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Problems

Problem 26. Let f : R → C be a 1-periodic, twice continuously differentiable
function. Show that

lim
n→±∞

|n2cf (n)| = 0.

Hint: Apply the Riemann Lebesgue Lemma.

Problem 27. Show that if f : R → C is 1-periodic and continuously differ-
entiable, the Fourier series of f converges absolutely. Hint: Apply Cauchy-
Schwartz. Recall that |cf ′(n) = 2πn|cf (n)|.

Problem 28. Let

I =

∫ 1

0

sin(πx)

x
1
4

dx , J =

∫ ∞

1

e−x5

.

Which of the following are true?

1. I < 1,

2. I ≤ 1
3 ,

3. I > 1
3 ,

4. J ≤ e−1

3
√
3
,

5. J > e−1

3
√
3

Hint: Is there a function p(x) such that we can compute the integral of p(x)e−x5

?

Problem 29. On the interval [−1, 1], define the Legendre polynomials by

Ln(x) :=
dn

dx2
(x2 − 1)n.

Consider the space of real-valued continuous functions on [−1, 1] with inner
product

⟨f, g⟩ :=
∫ 1

−1

f(x)g(x)dx.

1. If f : [−1, 1] → R is infinitely differentiable, show that

⟨Ln, f⟩ = (−1)n⟨(x2 − 1)n, f (n)⟩.

2. Prove that for m ̸= n, ⟨Ln, Lm⟩ = 0.

3. Hence show that any polynomial p of degree n such that ⟨p, xk⟩ = 0 for
k = 0, . . . , n− 1 is a multiple of Ln.
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Remark 1. Any Riemann integrable function on [−1, 1] can be well approxi-
mated by continuous functions. Any continuous function on [−1, 1] can be well
approximated by a polynomial. Combining these two claims, along with the best
approximation theorem, imply that

lim
N→∞

∥f −
N∑

n=0

⟨f,Ln⟩Ln∥ = 0

where Ln = Ln/∥Ln∥. Thus, there exists a Legendre expansion of f which
converges to f in a square-integrable sense.

Problem 30. For r ∈ [0, 1), define the Poisson kernel by

Pr(x) :=
∑
n∈Z

r|n|e2πinx,

where we take r0 = 1 for all r ∈ [0, 1). Show that

lim
r→1−

∫ 1
2

- 12

Pr(x− y)f(y)dy = f(x)

converges uniformly for all continuous 1-periodic functions f : R → C. Hint:
Consider the Key Lemma about Dirac families.

Notation

For f : R → C absolutely integrable, the Fourier transform of f is defined by

f̂(ξ) :=

∫ ∞

-∞
f(x)e−2πiξxdx

For f continuous with f̂ absolutely integrable, the inverse Fourier transform
recovers the original function

f(x) =

∫ ∞

-∞
f̂(ξ)e2πiξxdξ.

Problems

Problem 31. Let f : R → C be an absolutely integrable function. Show the
following

• If f is even, f̂ is even,

• If f is odd, f̂ is odd,

• If f is real valued, f̂(−ξ) = f̂(ξ),

• If f is totally imaginary, f̂(−ξ) = −f̂(ξ).
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In particular, note that if f is even and real, f̂ is even and real. If the Fourier
inversion theorem holds, then the prior implications are equivalences.

Problem 32. Suppose f is absolutely integrable and continuously differentiable
with absolutely integrable derivative. Show that

d̂f

dx
(ξ) = 2πiξf̂(ξ) and

df̂

dξ
(ξ) = −2πix̂f(ξ).

Problem 33. Use the results of problem to to give a shorter proof of the result
that

f(x) = e−πx2

⇒ f̂(ξ) = e−πξ2 .

Specifically, give a proof that avoids the auxiliary function ϕ used in the lectures.
You may assume that ∫ ∞

-∞
e−πx2

dx = 1.

Problem 34. Let f : R → C be a continuously differentiable function with
Fourier transform

f̂(ξ) =

{
1− |ξ| |ξ| ≤ 1,

0 |ξ| > 1.

Without computing the inverse Fourier transform (except possibly at x = 0)
determine which of the following are true.

1.
∑

n≥1 f(n) = 0,

2. f(0) = 1,

3. f is even,

4. f is real valued.

Problem 35. Explicitly compute the inverse Fourier transform of

f̂(ξ) =

{
1− |ξ| |ξ| ≤ 1,

0 |ξ| > 1.

Hence show that
π2

sin2(πx)
=

∑
n∈Z

1

(x+ n)2

for all x ̸∈ Z.
Hint: An antiderivative of x cos(ax) is cos(ax)

a2 + x sin(ax)
a .

Problem 36. Suppose u : R → C is a infinitely differentiable function with
absolutely integrable derivatives, solving the differential equation

u′′ − u = e−|t|.

Determine the Fourier transform of u.
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Notation

For f : R → C absolutely integrable, the Fourier transform of f is defined by

f̂(ξ) :=

∫ ∞

-∞
f(x)e−2πiξxdx

For f continuous with f̂ absolutely integrable, the inverse Fourier transform
recovers the original function

f(x) =

∫ ∞

-∞
f̂(ξ)e2πiξxdξ.

We denote by u : R → R the Heaviside step function

u(x) :=

{
1 x ≥ 0,

0 x < 0.

Problems

Problem 37. Let f(x) = xexu(x). Which of the following equalities are true?

1. (f ∗ f)(x) = x2e2xu(x),

2. (f ∗ f)(x) = x2exu(x),

3. (f ∗ f)(x) = x3

6 e
xu(x),

4. (f ∗ f)(0) = 0,

5. (f ∗ f)(0) =
∫∞
0
x2e2xdx.

Problem 38. Let ψ(x) = eiπx
2

and suppose f : R → C is a bounded continuous
absolutely integrable function. SHow that∫ ∞

-∞
|(f ∗ ψ)(x)|2dx =

∫ ∞

-∞
|f(x)|2dx.

Show that if ϕ(x) = eiπx, then∫ ∞

-∞
|(f ∗ ϕ)(x)|2dx <∞

if and only if f̂( 12 ) = 0.

Problem 39. Let f : R → C be a continuous function with constant C > 0
such that |f(x)| ≤ C

1+x2 for all x ∈ R. Show the following:

1. Let a ∈ R and define ga(x) := f(x− a). Determine ĝa(ξ).

2. By appropriate choice of a, show that f̂(ξ) → 0 as |ξ| → ∞.
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Hint: find a such that f̂(ξ) = 1
2

∫∞
-∞ (f(x)− ga(x)) e

−2πiξxdx.

Problem 40. Let f : R → C be an absolutely integrable function such that
f̂(ξ) = 1

1+ξ4 . Which of the following are true?

1. f̂ ′ ∗ f ′(ξ) = −4π2ξ2

(1+ξ4)2 ,

2. f̂ ′ ∗ f ′(ξ) = 4π2ξ2

(1+ξ4)2 ,

3. If g(x) = f(x) cos(2πx), ĝ(ξ) = 1
2

(
1

1+(ξ+1)4 + 1
1+(ξ−1)4

)
,

4. If g(x) = f(x) cos(2πx), ĝ(ξ) = 1
2

(
1

1+(ξ+2π)4 + 1
1+(ξ−2π)4

)
,

5. f ′(0) = π.

Problem 41. Let g(x) = e−x4

. We will show that ĝ(ξ) assumes negative values.

1. Let f : R → C be an even absolutely integrable function. Show that if
f(x) ≥ 0 for all x ∈ R, then

4f̂(ξ) ≤ 3f̂(0) + f̂(2ξ) for all ξ ∈ R.

Hint: 3− 4 cos θ + cos 2θ = 8 sin4 θ
2

2. Suppose ĝ(ξ) ≥ 0 for all ξ and derive a contradiction by showing the
inequality fails for values close to zero.

Hint: Recall ˆ̂g(x) = g(−x)!

Notation

For f : Rd → C absolutely integrable, the Fourier transform of f is defined by

f̂(ξ) :=

∫
Rd

f(x)e−2πi⟨ξ,x⟩dx

For f continuous with f̂ absolutely integrable, the inverse Fourier transform
recovers the original function

f(x) =

∫
Rd

f̂(ξ)e2πi⟨ξ,x⟩dξ.

Problems

Problem 42. Prove the Heisenberg uncertainty principal in one dimension:
let ψ : R → C be a smooth rapidly decaying function with absolutely integrable
derivatives such that ∫ ∞

-∞
|ψ(x)|2dx = 1.
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Prove that (∫ ∞

-∞
x2|ψ(x)|2dx

)(∫ ∞

-∞
ξ2|ψ̂(ξ)|2dξ

)
≥ 1

16π2
.

Hint: Integrate |ψ(x)|2 by parts and apply Cauchy-Schwartz

Remark 2. In quantum mechanics, such a ψ is called a probability amplitude.
The probability of a quantity associated to ψ lying in [a, b] is given by∫ b

a

|ψ(x)|2dx

while the expected value and variance of measurements of that quantity are given
by

x̄ :=

∫ ∞

-∞
x|ψ(x)|2dx, Vx :=

∫ ∞

-∞
(x− x̄)2|ψ(x)|2dx

respectively. In the case where ψ(x) is associated to the position of a particle,

ψ̂(ξ) corresponds to the momentum of that particle. Thus, we have shown that,
for a particle with mean position and momentum 0,

VpositionVmomentum ≥ 1

16π2

By a change of variables, this result applies to particles with non-zero mean
position and momentum as well.

Problem 43. Let f : R → C be an infinitely differentiable function with Fourier

transform f̂(ξ) = e−|ξ|
1
2 . Which of the following are true?

1. f is even,

2. f is real valued,

3.
∫∞
0

|f ′(x)|2dx = 30π2,

4. f(0) = 2,

5. f ′(0)=1.

Problem 44. Suppose f : R → C has Fourier transform f̂(ξ) = 1
1+|ξ|π . Show

that
f(0) > |f(x)|

for all x ̸= 0.
Hint: Note that for every x ∈ R there exists θx ∈ R such that |f(x)| =

e2πixθxf(x). Apply Fourier inversion.

Problem 45. Let f : R2 → C be an absolutely integrable function with Fourier
transform f̂(ξ1, ξ2) = 1

(1+ξ21+ξ2)α
for some α > 1. Which of the following can

we say about f?
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1. f(0, 0) = 0,

2. f : R2 → R,

3.
∫
R2 f(x, y)

2dx dy = π
2α−1 ,

4.
∫
R2 f(x, y)dx dy = 1,

5. sup(x,y)∈R2 |f(x, y)| > π
2α−1 .

Problem 46. Let A be a d× d positive definite symmetric real matrix and let
fA : Rd → C be the function

fA(x) = e−π⟨x,Ax⟩.

Compute f̂(0). Can you give an expression for f̂(ξ)?
Hint: Recall that every positive definite symmetric real matrix can be written

in the form A = R−1DR for a diagonal matrix D and a rotation matrix R. To
compute f̂(ξ), it is sufficient to give an expression for f̂(R−1ξ).

Notation

For f : Rd → C absolutely integrable, the Fourier transform of f is defined by

f̂(ξ) :=

∫
Rd

f(x)e−2πi⟨ξ,x⟩dx

For f continuous with f̂ absolutely integrable, the inverse Fourier transform
recovers the original function

f(x) =

∫
Rd

f̂(ξ)e2πi⟨ξ,x⟩dξ.

Problems

Problem 47. Suppose f : R2 → C is doubly periodic:

f(x+ 1, y) = f(x, y + 1) = f(x, y)

for all x, y ∈ R. Define the Fourier coefficients of f by

cf (m,n) :=

∫ 1
2

− 1
2

∫ 1
2

− 1
2

f(x, y)e−2πimx−2πinydx dy.

Suppose further that ∑
m,n∈Z

|cf (m,n)| <∞.
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and f is continuous. Define

fn(x) =
∑
m∈Z

cf (m,n)e
2πimx

and show that
f(x, y) =

∑
n∈Z

fn(x)e
2πiny

for every (x, y) ∈ R and hence conclude that

f(x, y) =
∑

m,n∈Z
cf (m,n)e

2πimx+2πiny

Problem 48. Assume the two dimensional analogue of Parseval’s theorem∫ 1
2

− 1
2

∫ 1
2

− 1
2

|f(x, y)|2dx dy =
∑

m,n∈Z
|cf (m,n|2

for continuous doubly periodic f : R2 → C with absolutely summable Fourier
coefficients. Let g : R2 → C be such that

|g(x, y)| ≤ C

1 + x2 + y2

for all (x, y) ∈ R2. Suppose further that

|ĝ(ξ, η)| ≤ C ′

1 + ξ2 + η2

for all (ξ, η) ∈ R2. By considering

ϕg(x, y) :=
∑

m,n∈Z
g(x+m, y + n)

prove a two dimensional analogue of the Poisson summation formula.

Problem 49. Determine an absolutely integrable function f : R → C such that

e−x4

=

∫ ∞

-∞
f(x− y)e−|y|dy

for all x.

Problem 50. Let u : R× [0, 1] → C be a function twice continuously differen-
tiable in each variable such that

∂2xu(x, y) + ∂2yu(x, y) = 0 for all y ∈ (0, 1)

u(x, 0) = u(x, 1) =
1

1 + 4π2x2

∫ ∞

-∞
|u(x, y)|dx <∞ for all y ∈ (0, 1)
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Determine u(x, y) as a convolution integral.
Hint: You may use that the Fourier transform of

ϕ(x) =
sin(πa)

2

1

cosh(πx) + cos(πa)

is equal to

Φ(ξ) =
sinh(2πaξ)

sinh(2πξ)

Problem 51. Let u : R × R≥0 → C be a function twice continuously differen-
tiable in each variable, such that

∂tu(x, t) = 6∂2xu(x, t) + e−πx2

u(x, 0) = e−|x|∫ ∞

-∞
|u(x, t)|dx <∞ for all t > 0

Determine u(x, t). You may express your answer as an inverse Fourier trans-
form. For an extra challenge, express your answer in terms of the error function:

Erf(x) =

∫ x

0

e−πy2

dy

and a convolution integral. Feel free to try to evaluate the convolution integral
in terms of the error function too!

Hint: f(x) = xErf(x)− 1
2π e

−πx2

is an antiderivative of Erf(x).

Notation

For f : R → C be (piecewise) continuous, right sided, a-exponentially integrable
function. The Laplace transform is defined as

Lf(s) :=
∫ ∞

0

f(x)e−sxdx

and is well defined for all s ∈ C with sufficiently real part greater than a. If
there exists b ∈ R such that Lf(b + 2πiξ) is absolutely integrable with respect
to ξ, the inverse Laplace transform is given by

f(x) =

∫ ∞

-∞
Lf(b+ 2πiξ)e(b+ 2πiξ)xdξ.

We often write F (s) in place of Lf(s) where it is unambiguous to do so.
If the order of exponential integrability is not specified, you map assume f

is exponentially integrable for all a > 0.
We denote by u(x) the Heaviside step function:

u(x) =

{
1 if x ≥ 0,

0 otherwise.
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Problems

Problem 52. Let f : R → C be continuous on [0,∞), right sided, and expo-
nentially integrable. Show that

1. If f : R → R, then the restriction of F to R is real valued,

2. If f(x) = xkg(x), then Lf l(s) = slF (s) for all 0 ≤ l ≤ k,

3. If f is bounded, then

lim
s→∞

sF (s) = lim
x→0+

f(x),

4. If limx→∞ f(x) <∞, then

lim
x→∞

f(x) = lim
s→0+

sF (s),

Remark 3. The final two properties hold more generally:

lim
s→∞

sF (s) = lim
x→0+

f(x),

always holds, and
lim
x→∞

f(x) = lim
s→0+

sF (s),

holds if sF (s) is finite for all s with ℜ(s) > 0.

Problem 53. Suppose f, g : R → C are continuous on [0,∞), right sided, and
exponentially integrable, satisfying the conditions for Laplace inversion. Show
that ∫ ∞

0

F (x)g(x)dx =

∫
f(y)G(y)dy.

Problem 54. Let h(x) = xexu(x). Suppose that f, g : R → C are right sided,
and exponentially integrable functions, continuous on [0,∞), such that f = h∗g.
Which of the following are true?

1. If g(x) = u(x), then f(x) = (1 + xex + ex)u(x),

2. If g(x) = u(x), then f(x) = (1 + xex − ex)u(x),

3. If f(x) = x2e2xu(x), then g(x) = (2 + 4x+ x2)e2xu(x),

4. If f(x) = x2e2xu(x), then g(x) = (2 + 4x+ 2x2)e2xu(x),

5. If g(x) = exu(x), then f(x) = x2exu(x).

Hint: The Laplace transform of xneaxu(x) is n!
(s−a)n+1 .
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Problem 55. Let α, β ∈ C be complex numbers and denote by hα,β the right
sided, c-exponentially integrable, continuous on [0,∞) function with Laplace
transform

Hα,β(s) =
1

(s− α)(s− β)

for ℜ(s) > c, where c = max(ℜ(α),ℜ(β)). Which of the following are true?

• hα,β(x) =
1

β−α

(
eαx − eβx

)
u(x) if α ̸= β,

• hα,β(x) =
1

α−β

(
eαx − eβx

)
u(x) if α ̸= β,

• hα,α(x) = xeαxu(x),

• hα,β(x) is bounded if and only if ℜ(α) ≤ 0 and ℜ(β) ≤ 0

• hα,α(x) = αxeαx.

Hint: The Laplace transform of xneaxu(x) is n!
(s−a)n+1 .

Problem 56. Let f, h : R → C be the right sided and 1-exponentially integrable
functions where

h(x) = cosh(x)u(x) and F (s) =
e−s

s4 − 1
for ℜ(s) > 1.

Assume f is continuous on [0,∞). Find a right-sided and 1-exponentially in-
tegrable function g : R → R such that f = h ∗ g. Give your answer as a real
valued function. You may use without proof the following Laplace transforms

p(x) = eaxu(x) ⇒ P (s) =
1

s− a
, k(x) = sin(x)u(x) ⇒ K(s) =

1

s2 + 1
.

Problem 57. Suppose g(x) is right sided and exponentially integrable. Show
that

f(x) :=

∫ x

−∞
g(y)dy

is right sided. If f(x) is also exponentially integrable, show sF (s) = G(s).
For f, g related as above, find real valued g such that

(g ∗ g)(x)− 2f(x) =
x3

6
− x

for all x > 0. You may use the following Laplace transform

h(x) =
xn

n!
u(x) ⇒ H(s) =

1

sn+1
.
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Notation

For f : R → C be (piecewise) continuous, right sided, a-exponentially integrable
function. The Laplace transform is defined as

Lf(s) :=
∫ ∞

0

f(x)e−sxdx

and is well defined for all s ∈ C with sufficiently real part greater than a. If
there exists b ∈ R such that Lf(b + 2πiξ) is absolutely integrable with respect
to ξ, the inverse Laplace transform is given by

f(x) =

∫ ∞

-∞
Lf(b+ 2πiξ)e(b+ 2πiξ)xdξ.

We often write F (s) in place of Lf(s) where it is unambiguous to do so.
If the order of exponential integrability is not specified, you map assume f

is exponentially integrable for all a > 0.
We denote by u(x) the Heaviside step function:

u(x) =

{
1 if x ≥ 0,

0 otherwise.

Problems

Problem 58. Let f be the right-sided and exponentially bounded function whose
Laplace transform is given by F (s) = (1+ s2)−

1
2 for Re(s) > 0. Let 0 ≤ α < β.

Find a right sided function y such that

(y′ ∗ y′)(x) + (y ∗ y)(x) = β2(f ∗ f)(x), y(0) = α,

for all x > 0.
Hint: You can use the Laplace transform pairs

g(x) = cos(x)u(x) ↔ G(s) =
s

s2 + 1
, h(x) = sin(t)u(t) ↔ H(s) =

1

s2 + 1
, Re(s) > 0.

Problem 59. Let

a(x) = exu(x), b(x) = e−xu(x), c(x) = 2exu(x),

and determine an α-exponentially integrable, right sided solution to

(a ∗ y′)(x)− (b ∗ y)(x) = c(x), y(0) = 0.

Problem 60. Find a right sided function f : R → C such that f(0) = 0 and

(f ′ ∗ f ′)(x) + (f ∗ f)(x) =
∫ x

0

y sin(x− y)dy, x > 0.
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Problem 61. Let α, β ∈ R and supposed that y is a right sided and exponentially
integrable solution to

(y′ ∗ y)(x) + αy(x) = βx2u(x), y(0) = α.

Suppose y is continuous at x = 0 and β > 0. Determine α for which a solution
exists and give one example of such a solution.

Problem 62. Let λ ∈ R and denote by yλ the unique right sided solution to the
initial value problem

y′′λ(x) + 2y′λ(x) + λyλ(x) = u(x− 2), y(0)λ = y′λ(0) = 0.

For which λ is yλ a bounded function on [0,∞).

Notation

Problems

Problem 63. Let u denote the solution to the heat equation

i) ∂tu(t, x) = 2∂2xu(t, x), t > 0, x ∈ (0, 1),

ii) u(t, 0) = u(t, 1) = 0, t ≥ 0,

iii) u(0, x) = x(1− x), x ∈ [0, 1].

Compute limt→∞ e2π
2tu(t, x). You may use without proof that∫ 1

0

x(1− x) sin(πx)dx =
4

π3
.

Problem 64. Determine the solution u denote to the heat equation

i) ∂tu(t, x) = ∂2xu(t, x) + t sin(πx), t > 0, x ∈ (0, 1),

ii) u(t, 0) = u(t, 1) = 0, t ≥ 0,

iii) u(0, x) = sin(πx), x ∈ [0, 1].

Problem 65. Given λ > 0, let uλ denote the solution to the heat equation

i) ∂tuλ(t, x) = λ∂2xuλ(t, x), t > 0, x ∈ (0, 1),

ii) uλ(t, 0) = uλ(t, 1) = 0, t ≥ 0,

iii) uλ(0, x) =
2

1+cos2(πx) − 1, x ∈ [0, 1].

Compute limλ→∞ eλπ
2tuλ(t, x).

Problem 66. Find a function u : [0,∞)× [0, 1] → R such that

i) ∂2t u(t, x)− ∂tu(t, x) + ∂2xu(t, x), t > 0, x ∈ (0, 1),

20



ii) u(t, 0) = u(t, 1) = 0, t ≥ 0,

iii) u(0, x) = sin(2πx)− sin(4πx), x ∈ [0, 1],

iv) limt→∞ u(t, x) = 0.

Problem 67. Given continuous f : [0, 12 ] → C whose odd extension to [− 1
2 ,

1
2 ]

is continuously differentiable on (− 1
2 ,

1
2 ], let uf : [0, 12 ] × [0,∞) → C be the

unique solution to

i) ∂tuf (t, x) = ∂2xuf (t, x), t > 0, x ∈ (0, 1),

ii) uf (t, 0) = uλ(t, 1) = 0, t ≥ 0,

iii) uf (0, x) = f(x), x ∈ [0, 1].

Define the energy of uf as the integral

Ef (t) :=

∫ 1
2

0

|uf (x, t)|2dx

and show

Ef (t) ≤ e−8π2t

∫ 1
2

0

|f(x)|2dx

It may be helpful to show E′
f (t) ≤ −8π2Ef (t) and integrate E′

f (t)e
8π2t by parts,

or consider Parseval’s theorem.
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