MMGT10: Fourier Analysis - Exercise Session
Problems LP1 2023, Gothenburg University

Adam Keilthy

The following is a collection of all the problems covered in exercise sessions as
part of the course. Each session’s problem set is separated by a short reminder
on notation used in the following problems.

Notation

Let f : R — C be a 1-periodic, continuous, Riemann integrable function, and
denote by cy : Z — C its Fourier coefficients

1
z .
c(n) == f(z)e ?mne g,
=
Problems
Problem 1. Suppose we have a (uniformly convergent) series expansion
f(.%‘) — Z cneQﬂ-inz.
ne”Z

Write this as a trigonometric series

f(z) = Z A, cos(2mnz) + Bsin(2mnx).
n>0
Can we compute {A,, By} directly from f?
Problem 2. Show the following implications:
1. f even = cs(n) = c¢s(—n) & By(n) =0,
2. f odd = c;(n) = —cp(—n) < Ap(n) =0,
3. f:R—=R=ci(n)=cs(—n) & As(n), By(n) € R,
4. f:R =R = cf(n) = —cs(—n) & As(n), By(n) € iR.

In particular, note that if f is even and real valued, so is cy, and if f is odd and
real valued, cy is odd and purely imaginary. If the Fourier series of f converges,
the above implications become equivalences.



Problem 3. 1. Compute the infinite sum S =Y °_| ﬁ Consider the
Fourier series of the 1-periodic function f such that f(x) = cosh(2wx) for

|z < 3.
2. Compute S = °_, ﬁ for a € Ryg.

Problem 4. Write f(z) =z, |z| < % as a sine-series.
Write f(z) = |z| |z| < % as a cosine series. (Do not worry about proving
convergence here. The goal is just to do the computation.)

Problem 5. Let 0 < a < 1 and suppose f : R — C is a continuous 1-periodic
function such that

[f(z) = F(y)l < Calz —y[*

for some constant Cy, and all z,y € R.
Prove

27(1+a)0a
m|*

(Hint: consider the Fourier coefficients of gm(x) := f(x) — f(x — 5=).)

lef(n)] <

Notation

Let f : R — C be a l-periodic, continuous, Riemann integrable function, and
denote by cy : Z — C its Fourier coefficients

Problems

Problem 6. Let cg,cq,...,Cp,... be a sequence of complex numbers and denote
by s, and o, the partial and Cesaro sums respectively:

n
Sp = E Ck,
k=0

1 n—1
Op ‘—=— Sk-
ni= kZ:O
1. Prove that if s, — s, then o, — s,
2., Is ¢, = n Cesaro summable? That is, does lim,,_,, 0, exist?

3. Is ¢, = (—1)"n Cesdaro summable?

Problem 7. Suppose that )", , |cs(n)| < co. Show that

1

> lesml = [ 1) Pda,

nez 2



Problem 8. Using the above result, conclude Y | - = g—;. (Hint: recall
the Fourier expansion of x2)

Problem 9 (2021, Exam 1, Q1). Which of the following hold for f(x) = x3?

1. Zmech m) =0,

o™ L e
N
3
m
N
~

Problem 10 (2020, Exam 1, Q8). Let f : R — C be a continuous 1-periodic
Sfunction with absolutely summable Fourier coefficients. Show that

Ifo /f ydz| < 3 Jes(mm)|

m=#0

27rlkm

for alln > 1. (Hint: Consider A,(m) = %ZZ;& 2 . Show that An(m) is
non-zero if and only if n divides m.)

Notation

Let f : R — C be a l-periodic, continuous, Riemann integrable function, and
denote by cf : Z — C its Fourier coefficients

c(n) = ’ f(z)e 2™ dy,

1
2

For f,g,h : R — C continuous, Riemann integrable 1-periodic functions,
define their (circular) convolution to be

(f *9)a / e

Problems
Problem 11. Denote by f : R — R the 1-periodic function
f@) =% v
B 1+ (x+n)?
nez

Compute the limit

I:= lim q- Z|Cf

q—0t



You may use without proof the relation

oo —2mixé
e dr o
1+ a2 ’

Problem 12. Show the following properties of convolution (assume f,g,h are
continuous):

1 frxg=gx*f,

2. fx(gxh)=(fxg)xh,

3. cpeg(n) = cp(n)cg(n)

Convolution often makes functions “nicer”. For example, f * g is continuous
for any Riemann integrable 1-periodic functions. This is easy to prove if f and
g are continuous, but is not obvious in general.

We get a particularly nice property if f is continuously differentiable.

Problem 13. Suppose f is a continuously differentiable 1-periodic function and
g 1s a Riemann integrable 1-periodic function. Show that

L (Fg)a) = (= 9)(o).

Note that this implies that if f is smooth, then so if f x g for any 1-periodic
Riemann integrable g.

Problem 14. Let f,g: (—%, %] — R be given by

f(z) = ze™™
1

and extend these 1-periodically to functions on R. Which of the following are
true?

1. (f*9)(0) =0,
2. (fx9)(0) =/,
J. fé (f * g)(x)dz = 0.

When proving results about continuity of integrals of discontinuous func-
tions, it may be helpful to approximate these functions by continuous counter-
parts. In the case of step functions, we often want to approximate them by
compactly supported smooth functions, i.e. smooth functions ¢ : R — R for
which

{z eR | ¢(x) # 0}
is compact. Such approximations are called bump functions, and convolution

with a bump function can provide a valuable smooth approximation to a non-
smooth function.



Problem 15. Prove that the function ¢ : R — R
1
e =2 ifre(-1,1
#(o) = foet=Ly
0 otherwise

s a compactly supported smooth function.

Notation

Let f : R — C be a l-periodic, continuous, Riemann integrable function, and
denote by cy : Z — C its Fourier coefficients

cr(n) = ’ f(z)e 2™ dy,

Problems

Problem 16. Let a € R\ Z be a fized real number. By considering the Fourier
series of (the 1-periodic extension of)

f(z) :==cos(2rax) =z € [—%, %]

show that
N

1
mweot(ma) = lim Z

N n+a
S N =+

Problem 17. The Bessel functions J, : R — R are defined by the relation
eitsin(271'x) _ Z Jn(t)GZTrinx
neEZ
for all x € R. Compute
I(t) = Y ()P

Problem 18. Find a continuous 1-periodic solution to the ordinary differential

equation
1

_ 1 27iz’
1—3e

f(@) = fz) =

Problem 19. Find Riemann integrable f(x) on the interval [0, 3] such that the
solution to the heat equation

1
Opu(x,t) = aiu(az,t) x € (0, 5), t>0

1
u(0,t) = u(ﬁ,t) =0 t>0,



satisfies u(xz,3) = 5sin(2rz) — sin(14wx).

Problem 20. Let ¢, k, L be positive real numbers. Suppose we are given f, g :
[0,L] — R such that their odd 2L-periodic extensions are twice continuously
differentiable. Let u : [0,L] x R>g — R denote the solution to the following
wave equation with damping
t) = 202u(x,t) — 2kdpu(z,t) = € (0,L), t >0,
t)=u(L,t)=0 t>0,
u(z,0) = f(z) =€][0,L],
(z,0) =g(z) ze€l0,L].

Show that if k < <, then lim;_, u(z,t) = 0 uniformly on [0, L].

Notation

Let V be a complex vector space equipped with an inner product

(,):VxV =C.

Denote by [|v]|? := (v,v) the associated norm. Recall that a set of elements
{e1,...,en} is called orthogonal if (e;,e;) = 0 for all ¢ # j. A set of elements
{e1,...,en} is called orthonormal if it is orthogonal and ||e;|| = 1 for every i.

0.1 Problems
Problem 21. Prove that for any x,y € V, we have

1 . . .
(@y) =7 ((le+yl” = lle=yl*) +i (Il + iyl - = - iyl?)
Hence prove that the inner product on

52 = {(an)n21 | Z |an|2 < OO}

n>1

given by

(@n), (b)) = 3 aubn

n>1

always converges and is therefore well defined.

Problem 22. Let V' be the vector space of continuous functions on [—1,1] and
define an inner product on V by

(f.g) = / gl

Let g1(z) =1, g2(z) = z, g3(x) = 2® — £. Which of the following are true?



1. g1,92,93 are orthogonal,
2. g1, 92,93 are orthonormal,
3. Nlgr + g2 + g3lI> > 3,

4. Nlgr + 92 +gs)* < %

(g1,93) = L.

Problem 23. Let V be a complex vector space with inner product {-,-). Suppose
(Tn)n>1 15 a sequence of elements of V' and suppose there exists an element x
such that

&

lim ||z, —z| — 0.
n—0o0
Show that lim,,_, oo ||zn|| = ||2||. Does the reverse implication hold?

Problem 24. Show that

2
-2

Z e_nsin(mc) <€ Z sin?(nx)
n T 1l-e2 n?

n>1 n>1

for every x € R. Does there exist any non-zero x € R such that this is an
equality?

Problem 25. Which of the following inequalities hold?
1 sin(27zx T
1| fy e | < X7

Vitaz?
2. |f01 %da&\ > %,
—— f027r e®sinbdg > 1 for any x # 0,
L
4 Tnr 3 < (S 250
5. Yonzo mrpgm = 2-
Notation

Let f : R — C be a l-periodic, continuous, Riemann integrable function, and
denote by ¢y : Z — C its Fourier coeflicients

cr(n) = ’ f(z)e 2™ dy,

1
2

Let V be a complex vector space equipped with an inner product

(,):VxV=C.

Denote by [|v]|? := (v,v) the associated norm. Recall that a set of elements
{e1,...,en} is called orthogonal if (e;,e;) = 0 for all i # j. A set of elements
{e1,...,en} is called orthonormal if it is orthogonal and ||e;|| = 1 for every i.



Problems

Problem 26. Let f: R — C be a 1-periodic, twice continuously differentiable
function. Show that

. 2 o
im[nep(n)] =0,

Hint: Apply the Riemann Lebesgue Lemma.

Problem 27. Show that if f : R — C is 1-periodic and continuously differ-
entiable, the Fourier series of f converges absolutely. Hint: Apply Cauchy-
Schwartz. Recall that |cy (n) = 2mn|cy(n)].

Problem 28. Let

Which of the following are true?
1. I <1,
2. 1<%
8. 1>1

4 J < 55,

5. J > &

Hint: Is there a function p(x) such that we can compute the integral ofp(ac)eﬂ”5 ?

Problem 29. On the interval [—1,1], define the Legendre polynomials by

L,(z): d-

Consider the space of real-valued continuous functions on [—1,1] with inner
product

1
= dx.
)= [ ragla)da
1. If f : [-1,1] — R is infinitely differentiable, show that
(Ln, ) = (=D)"{(2® = 1), f™).
2. Prove that for m #n, (L, L) = 0.

3. Hence show that any polynomial p of degree n such that (p,z*) = 0 for
k=0,...,n—1is a multiple of L.



Remark 1. Any Riemann integrable function on [—1,1] can be well approxi-
mated by continuous functions. Any continuous function on [—1,1] can be well
approzimated by a polynomial. Combining these two claims, along with the best
approximation theorem, imply that

N

where L, = Lyp/||Lyn||. Thus, there exists a Legendre expansion of f which
converges to f in a square-integrable sense.

Problem 30. Forr € [0,1), define the Poisson kernel by

Pr((E) = Z 71|n\627rinx7

nez

where we take 70 =1 for all r € [0,1). Show that

3
lim [ P(z—y)f(y)dy = f(x)
r—1 _%
converges uniformly for all continuous 1-periodic functions f : R — C. Hint:
Consider the Key Lemma about Dirac families.

Notation

For f:R — C absolutely integrable, the Fourier transform of f is defined by
f©) = [ rwe i

For f continuous with f absolutely integrable, the inverse Fourier transform
recovers the original function

f(a) = / " feeme e,

Problems

Problem 31. Let f : R — C be an absolutely integrable function. Show the
following

o If f is even, f 15 even,

o If fis odd, f is odd,
o If f is real valued, f(—€) = f(€),

o If f is totally imaginary, f(—€) = —f(£).




In particular, note that if f is even and real, f is even and real. If the Fourier
inversion theorem holds, then the prior implications are equivalences.

Problem 32. Suppose f is absolutely integrable and continuously differentiable
with absolutely integrable derivative. Show that

d ; af —
(O =2migf(e) and GHe) = ~2mizf(e).

Problem 33. Use the results of problem to to give a shorter proof of the result
that

fl@)=e" = fe) =e
Specifically, give a proof that avoids the auziliary function ¢ used in the lectures.

You may assume that
o0
/ e dy = 1.
-00

Problem 34. Let f : R — C be a continuously differentiable function with

Fourier transform
¢ _ 1- |§| |§| < 17
1= {O €] > 1.

Without computing the inverse Fourier transform (except possibly at x = 0)
determine which of the following are true.

1.3 1 f(n) =0,
2. f(0)=1,
3. f is even,
4. f is real valued.
Problem 35. Explicitly compute the inverse Fourier transform of

f(f)—{o Qo

Hence show that )

1
2 P

7T p—
sin?(mz) =

forallx € 7.

Hint: An antiderivative of x cos(ax) is ‘:02(7;”) + x“nfliax)

Problem 36. Suppose u : R — C is a infinitely differentiable function with

absolutely integrable derivatives, solving the differential equation
u —u=el

Determine the Fourier transform of u.

10



Notation

For f:R — C absolutely integrable, the Fourier transform of f is defined by
f©) = [ r@e i

For f continuous with f absolutely integrable, the inverse Fourier transform
recovers the original function

f(z) = / " e e,

We denote by u : R — R the Heaviside step function

u(z) = {1 z20,

0 z<0.

Problems

Problem 37. Let f(x) = xe®u(x). Which of the following equalities are true?
L (# D) = (),

)
2. (f * f)(x) = 2*e"u(x),
3. (f * @) = Fetu(x),
4. (f= f)(0)=0,
5. (f=f)(0) = [;7 a?e**dx

Problem 38. Let ¢(x) = ™ and suppose f : R — C is a bounded continuous
absolutely integrable function. SHow that

[ 1 w@Pan = [P,

o0 =00

Show that if ¢(x) = €™, then

[ 1 @har < oo

if and only if f(%) =0.

Problem 39. Let f : R — C be a continuous function with constant C > 0

such that | f(x)] < TCJ:? for all x € R. Show the following:

1. Let a € R and define gq(x) := f(xz — a). Determine §,(&).

2. By appropriate choice of a, show that f(€) — 0 as |£| — co.

11



Hint: find a such that f(€) = L2 (f(2) = ga(2)) e 2™ da,

Problem 40. Let f : R — C be an absolutely integrable function such that
f(6 = ﬁ Which of the following are true?

—
7471,2 2

L Jr* (&) = T

—_— 477-2&2

2. ' (&) = renye

3. Ifg(x) = f(.%‘) COS(QTFl'); g(f) = % <1+(§1+1)4 + 1+(£1_1)4>;

4 1 9(w) = (@) cos(2ma), §(6) = § (riebam + Tretem )
5. f(0) =m.
Problem 41. Let g(z) = e=*". We will show that (&) assumes negative values.

1. Let f : R — C be an even absolutely integrable function. Show that if
f(x) >0 for all x € R, then

4f(€) <3f(0)+ f(26)  for allé €R.
Hint: 3 — 4cosf + cos 20 = 8sin* %

2. Suppose G(&) > 0 for all & and derive a contradiction by showing the
inequality fails for values close to zero.

Hint: Recall §(x) = g(—xz)!

Notation

For f : R? — C absolutely integrable, the Fourier transform of f is defined by
f©) = [ ra)e e
Rd

For f continuous with f absolutely integrable, the inverse Fourier transform
recovers the original function

J@)= | J©emede.

Problems

Problem 42. Prove the Heisenberg uncertainty principal in one dimension:
let ¥ : R — C be a smooth rapidly decaying function with absolutely integrable

deritvatives such that -
| w@pds =1,

-00

12



Prove that

([ wwwra) ([~ eora) >

Hint: Integrate [1(x)|* by parts and apply Cauchy-Schwartz

Remark 2. In quantum mechanics, such a 1 is called a probability amplitude.
The probability of a quantity associated to v lying in [a,b] is given by

/ " (o) P

while the expected value and variance of measurements of that quantity are given
by

pi= [Calv@Pde, Vo= [ - 2Plveld

o) -00
respectively. In the case where (x) is associated to the position of a particle,

77[3(5) corresponds to the momentum of that particle. Thus, we have shown that,
for a particle with mean position and momentum 0,

1
V;)osition Vmomentum Z @

By a change of variables, this result applies to particles with non-zero mean
position and momentum as well.

Problem 43. Let f : R — C be an infinitely differentiable function with Fourier
A~ 1
transform f(€) = e~ 1€17 . Which of the following are true?

1. f is even,
2. f is real valued,

3. [7 1f () Pde = 3072,

4- f(0) =2,
5. f(0)=1.
Problem 44. Suppose f : R — C has Fourier transform f({) = H‘lﬂﬂ. Show
that
f(0) > [f ()]
for all x # 0.

Hint: Note that for every x € R there exists 0, € R such that |f(z)| =
e?™iwls £ (). Apply Fourier inversion.

Problem 45. Let f: R2 — C be an absolutely integrable function with Fourier

transform f(&1,&2) = m for some a > 1. Which of the following can
1

we say about f?

13



1. £(0,0)=0,

2. f:R? 5 R,

3. Jpo fla,y)Pdady = 57,
4o Jpo [z y)dedy =1,

5. sup(y yyerz |f(7,9)] > 57

Problem 46. Let A be a d x d positive definite symmetric real matriz and let
fa:R% — C be the function

fA(‘T) — 6—7T<$,A3’,'>.
Compute f(0). Can you give an expression for f(&)?
Hint: Recall that every positive definite symmetric real matriz can be written

in the form A = R™'DR for a diagonal matriz D and a rotation matriz R. To
compute f(£), it is sufficient to give an expression for f(R™E).

Notation

For f : R? — C absolutely integrable, the Fourier transform of f is defined by
£y = [ f@pe s
Rd

For f continuous with f absolutely integrable, the inverse Fourier transform
recovers the original function

@)= | J©emede.

Problems

Problem 47. Suppose f : R? — C is doubly periodic:

f(:c+1,y) =f(:v,y+1) =f(93,y)

for all x,y € R. Define the Fourier coefficients of f by

mn/

Suppose further that

f T y —27rzmx 27rznydl, dy.
1

1
2 2

Z lef(m,n)| < oo.

m,n€z

14



and f is continuous. Define

fn(x) _ Z cf(m,n)ez’rim‘”

mEZ

and show that

fa,y) = falz)e’™™

neZ

for every (z,y) € R and hence conclude that

f($7 y) — Z ¢y (m’ n)eQﬂ-imx+27r'my
m,ne”

Problem 48. Assume the two dimensional analogue of Parseval’s theorem
o
[ teaPazdy= Y festmnf
1 1
—2v T2 m,n€”Z
for continuous doubly periodic f : R? — C with absolutely summable Fourier

coefficients. Let g : R?> — C be such that

[ —

for all (z,y) € R%. Suppose further that

/

|g(§777)| < m

for all (&,7m) € R%2. By considering

bg(z,y) = D gle+my+n)

m,n€”Z
prove a two dimensional analogue of the Poisson summation formula.

Problem 49. Determine an absolutely integrable function f : R — C such that

e = [ - ey

for all .

Problem 50. Let u: R x [0,1] — C be a function twice continuously differen-
tiable in each variable such that

Pou(z,y) + Oou(x,y) =0 for all y € (0,1)

1 oo
u(z,0) =u(z,1) = m/ lu(z, y)|dz < oo for all y € (0,1)

-00

15



Determine u(z,y) as a convolution integral.
Hint: You may use that the Fourier transform of

sin(7a) 1
2 cosh(mz) + cos(wa)

¢(z) =

s equal to
_ sinh(2maf)

O i)

Problem 51. Let u : R x R>¢g = C be a function twice continuously differen-
tiable in each variable, such that

Opu(w,t) = 602u(w,t) + e

u(z,0) = eIl

/ lu(z, t)|dx < 0o for allt >0

oo

Determine u(x,t). You may express your answer as an inverse Fourier trans-
form. For an extra challenge, express your answer in terms of the error function:

Erf(x):/ e*”dey
0

and a convolution integral. Feel free to try to evaluate the convolution integral
in terms of the error function too! ,
Hint: f(z) = xErf(z) — 5=~ ™ is an antiderivative of Erf(z).

Notation

For f: R — C be (piecewise) continuous, right sided, a-exponentially integrable
function. The Laplace transform is defined as

Lf(s) = /000 flz)e *%dx

and is well defined for all s € C with sufficiently real part greater than a. If
there exists b € R such that L£f(b+ 27i) is absolutely integrable with respect
to £, the inverse Laplace transform is given by

f(z) = / - Lf(b+2mi€)e'b + 2mif)xde.

We often write F(s) in place of £f(s) where it is unambiguous to do so.

If the order of exponential integrability is not specified, you map assume f
is exponentially integrable for all a > 0.

We denote by u(x) the Heaviside step function:

i >
u(x)—{llfxa

0 otherwise.

16



Problems

Problem 52. Let f : R — C be continuous on [0,00), right sided, and expo-
nentially integrable. Show that

1. If f : R — R, then the restriction of F' to R is real valued,
2. If f(z) = 2%g(z), then Lf'(s) = s'F(s) for all 0 <1 < k,
3. If f is bounded, then

lim sF(s) = lim f(x),

s—00 20+
4. If limg o f(2) < 00, then

lim f(z) = lim sF(s),

T—00 s—0+

Remark 3. The final two properties hold more generally:

lim sF(s) = lim f(x),

S—00 r—0+
always holds, and
xll)n;o flx)= sl_l)I(IJl+ sF(s),

holds if sF(s) is finite for all s with R(s) >0

Problem 53. Suppose f,g: R — C are continuous on [0,00), right sided, and
exponentially integrable, satisfying the conditions for Laplace inversion. Show

that -
/ F(2)g(z)dz = / F(0)Gy)dy
0

Problem 54. Let h(z) = ze®u(x). Suppose that f,g : R — C are right sided,
and exponentially integrable functions, continuous on [0,00), such that f = hxg.
Which of the following are true?

If g(x) = u(x), then f(x) = (1+xe” + e")u(x),
2. If g(z) = u(z), then f(z) = (1 + ze” — e®)u(z),

3. If f(x) = 22e**u(x), then g(z) = (2 + 4z + 22)e®* u(x),
4. If f(z) = 22e*u(x), then g(z) = (2 + 4z + 222)e2*u(x),
5. If g(x) = e®u(x), then f(z) = 22e%u(x).

Hint: The Laplace transform of x™eu(x) is (SJLLW

~

17



Problem 55. Let o, 3 € C be complex numbers and denote by ho g the right
sided, c-exponentially integrable, continuous on [0,00) function with Laplace
transform

1
e = Gt
for R(s) > ¢, where ¢ = max(R(«), R(B)). Which of the following are true?
o hap(z) = 7= (e*" — eP") u(x) if o # B,
o has(@) = 215 (¢ — ) u(z) o £ B,

ha,p(x)
o hoolx)=uze
e hg s
o h (

Hint: The Laplace transform of x™eu(x) is W

Problem 56. Let f,h: R — C be the right sided and 1-exponentially integrable
functions where

—S

h(z) = cosh(z)u(z) and F(s) = —— T for ®(s) > 1

Assume f is continuous on [0,00). Find a right-sided and 1-exponentially in-
tegrable function g : R — R such that f = hxg. Give your answer as a real
valued function. You may use without proof the following Laplace transforms

L k(z) = sin(zx)u(r) = K(s) = !

p(z) = e*u(x) = P(s) = e 21

Problem 57. Suppose g(x) is right sided and exponentially integrable. Show
that

fw) = | " o)y

— 00

is right sided. If f(x) is also exponentially integrable, show sF(s) = G(s).
For f,g related as above, find real valued g such that

3

(9+9)(@) 2 () = = =
for all x > 0. You may use the following Laplace transform
x" 1

18



Notation

For f : R — C be (piecewise) continuous, right sided, a-exponentially integrable
function. The Laplace transform is defined as

Lf(s):= /000 f(x)e™*dx

and is well defined for all s € C with sufficiently real part greater than a. If
there exists b € R such that L£f(b+ 27i€) is absolutely integrable with respect
to &, the inverse Laplace transform is given by

f(z) = / . f(b+ 2mi€)e'db + 2mi€)xde.

oo

We often write F(s) in place of L£f(s) where it is unambiguous to do so.

If the order of exponential integrability is not specified, you map assume f
is exponentially integrable for all a > 0.

We denote by u(x) the Heaviside step function:

lifz >
u(x):{ it x >0,

0 otherwise.

Problems

Problem 58. Let f be the right-sided and exponentially bounded function whose
Laplace transform is given by F(s) = (14 5%)~2 for Re(s) > 0. Let 0 < a < f.
Find a right sided function y such that

W =y (@) + (y*y) (@) = B2(f * )(x), y(0)=a,

for all x > 0.
Hint: You can use the Laplace transform pairs
g(z) = cos(z)u(x) <> G(s) = 2 j_ T h(z) = sin(t)u(t) <> H(s) = = :_ T Re(s) >0

Problem 59. Let
fu(z), b(z) =eTulz), clz)=2e"u(z),
and determine an a-exponentially integrable, right sided solution to

(axy)(z) = (bry)(x) =c(z), y(0)=0.

Problem 60. Find a right sided function f:R — C such that f(0) =0 and

(% )(@) + (f * (@) = / Cysin(e - y)dy, x> 0.
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Problem 61. Leta, S € R and supposed that y is a right sided and exponentially
integrable solution to

' *y)(z) + ay(z) = Bz’u(z), y(0)=a.

Suppose y is continuous at © =0 and 8 > 0. Determine « for which a solution
exists and give one example of such a solution.

Problem 62. Let A € R and denote by y, the unique right sided solution to the
initial value problem

ya () + 295 () + Aya(z) = u(z —2),  y(0)x = y\(0) = 0.

For which X is y) a bounded function on [0,00).

Notation

Problems

Problem 63. Let u denote the solution to the heat equation
i) Opu(t,z) = 20%u(t,z), t>0,z¢€(0,1),

it) u(t,0) =u(t,1) =0, t>0,

iii) u(0,x) =z(1 —=x), =z €][0,1].

Compute lim;_, o eQﬂztu(t, x). You may use without proof that

! 4
/ z(1 — z)sin(rz)dr = —.
0

0
Problem 64. Determine the solution u denote to the heat equation
i) Qpu(t,x) = 2u(t,z) + tsin(mz), t >0,z € (0,1),
i) u(t,0) =u(t,1) =0, t>0,
iii) u(0,z) = sin(mz), x €]0,1].
Problem 65. Given A > 0, let uy denote the solution to the heat equation
i) Quy(t, ) = \2uy(t,x), t>0,z¢€(0,1),
i) ua(t,0) = ur(t,1) =0, >0,

i11) ux(0,x) = -1, z€]o0,1].

Compute limy_, o0 e’\’rztuA(t, x).
Problem 66. Find a function u : [0,00) x [0,1] = R such that
i) O?u(t,x) — Opu(t,z) + 2u(t,z), t>0,z¢€(0,1),
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i) u(t,0) =u(t,1) =0, t>0,
iii) u(0,x) = sin(2nx) — sin(dnz), x € [0,1],
) im0 u(t, z) = 0.

Problem 67. Given continuous f : [0, 3] — C whose odd extension to [—3, 1]
is continuously differentiable on (—%, 3], let uy : [0,1] x [0,00) — C be the
unique solution to

i) Opuy(t,z) = O2up(t,z), t>0,z€(0,1),
ii) up(t,0) = ux(t,1) =0, >0,
iii) up(0,2) = f(x), =€][0,1].

Define the energy of us as the integral

Ej(t) = /0E s (z, )2

and show

Ep(t) < o8t / Y| f (@) Pde

It may be helpful to show E'%(t) < —8m2E(t) and integrate £ (t)68”2t by parts,
or consider Parseval’s theorem.

21



