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1 Motivating Fourier series

Fourier series a a method of representing a sufficiently nice function as a trigono-
metric series. Historically, this was motivated by the study of certain partial
differential equations. For example, the wave equation

∂2u

∂t2
(x, t) =

∂2u

∂x2
(x, t)

for u : [−1
2 ,

1
2 ]× R → R with boundary conditions

u(
−1

2
, t) = u(

1

2
, t) = 0 for all t ∈ R

may be solved as follows. Consider solutions of the form u(x, t) = X(x)T (t).
For non-zero solutions u(x, t), the wave equation may be rewritten as

X ′′(x)

X(x)
=
T ′′(t)

T (t)
.

Since the left hand side is only a function of x and the right hand side is only
a function of t, they must both be equal to some real constant λ. Hence

X ′′(x) = λX(x).

If λ = 0, X(x) = Ax + B for some constants A,B. The boundary constraints
then imply that A = B = 0, so we get the trivial solution.

Similarly, if λ > 0, we obtain X(x) is a sum of real exponentials, and hence
there are no non-trivial solutions with our boundary conditions. Thus, we must
have λ = −c2 for some real c. Assuming this, we find

X(x) = A cos(cx) +B sin(cx).

Considering again our boundary constraints, we find we must have c = 2πn for
some n ∈ Z. Without loss of generality we can take n ≥ 0. We must also have
that B = 0.
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Thus, a general solution to the wave equation will be of the form

u(x, t) =
∑
n≥0

Tn(t) cos(2πnx)

for some functions Tn(t). If we have an initial condition

u(x, 0) =
∑
n≥0

Tn(0) cos(2πnx) = f(x)

we can solve this differential equation only if we can find constants An = Tn(0)
such that ∑

n≥0

An cos(2πnx) = f(x).

The goal for this week to to describe how to compute these constants and discuss
for what f such a series expansion can exist. More generally, we will consider
when a series expansion of the form

f(x) = A0 +
∑
n≥1

An cos(2πnx) +Bn sin(2πnx)

or equivalently

f(x) =
∑
n∈Z

cne
2πinx

exists.

2 Computing Fourier coefficients

Definition 1. Let f be a Riemann integrable function that is 1-periodic on R
or defined on [− 1

2 ,
1
2 ]. Define its Fourier coefficients cf : Z → C by

cf (n) :=

∫ 1
2

− 1
2

f(x)e−2πinxdx.

Lemma 1. If we have a (uniformly convergent) series expansion

f(x) =
∑
n∈Z

cne
2πinx,

then cn = cf (n) for all n.

Proof.

cf (n) =

∫ 1
2

− 1
2

f(x)e−2πinxdx

=

∫ 1
2

− 1
2

∑
m∈Z

cne
2πi(m−n)xdx
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By the dominated convergence theorem, we can swap the order of integration
and summation and hence

cf (n) =
∑
m∈Z

cm

∫ 1
2

- 12

e2πi(m−n)xdx

=
∑
m∈Z

cmδm,n

=cn,

where

δm,n =

{
1 if m = n

0 otherwise.

Thus, to every Riemann integrable function f : [− 1
2 ,

1
2 ] → C, we can asso-

ciate a Fourier series ∑
n∈Z

cf (n)e
2πinx

that is the unique possible exponential series expansion. However, it is not
guaranteed that such a series converges at all, let alone to f(x). For sufficiently
nice functions, we will find that this is the case, but:

1. Near discontinuities, the Fourier series (if it converges) converges to a local
average rather than the value of f

2. The Fourier series depends only on the integral of f and so we can change
f on a set of measure 0 without changing the series

3. There are continuous functions for which the Fourier series does not con-
verge at all at certain points

Nevertheless, for continuous functions, we can guarantee a certain type of con-
vergence, and the Fourier coefficients still encode all the important information.

Proposition 1. Let f, g : [− 1
2 ,

1
2 ] → C be Riemann integrable functions that

are continuous at a point x0 ∈ (− 1
2 ,

1
2 ). Then if cf (n) = cg(n) for all n,

f(x0) = g(x0), i.e. a function is determined by its Fourier coefficients where it
is continuous

Proof. We will consider only the case where f and g are real valued. The
complex case follows by considering real and imaginary parts.

By extending f, g to 1-periodic functions and translating if necessary, we
can assume x0=0. By considering h = f − g, it suffices to show that, if h is
continuous at 0 and ch(n) = 0 for all n, then h(0) = 0. Suppose otherwise,
without loss of generality, that h(0) > 0.
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Since h is continuous at 0, there exist δ > 0 such that

h(x) >
h(0)

2

for all |x| < δ. Let

p(x) = ε+
1

2

(
e2πix + e−2πix

)
= ε+ cos(2πx)

and denote by pk(x) := p(x)k. We choose ε sufficiently small such that |p(x)| <
1− ε

2 for |x| ≥ δ and choose 0 < η < δ such that p(x) > 1 + ε
2 for |x| < η.

Then,
∫ 1

2

- 12
h(x)pk(x)dx is a linear combination of Fourier coefficients (as pk(x)

is a linear combination of e2πinx) and hence is equal to 0 for all k.
As h is continuous on a compact interval, there exists someM > 0 such that

|h(x)| < M for all x ∈ [− 1
2 ,

1
2 ]. We then note that

|
∫
δ≤|x|≤ 1

2

h(x)pk(x)dx |≤M
(
1− ε

2

)k
, which tends to 0,∫

η≤|x|≤δ

h(x)pk(x)dx ≥ 0,∫
|x|≤η

h(x)pk(x)dx ≥ ηh(0)

2
(1 +

ε

2
)k →k→∞ ∞.

Thus, the integral ∫ 1
2

- 12

h(x)pk(x) = 0

is a sum of a positive number, plus something small, plus something that tends
to infinity for large k, and hence tends to infinity as k → ∞. But this is a
contradiction. Hence h(0) = 0.

Corollary 1. If f, g : [− 1
2 ,

1
2 ] → C are continuous and cf (n) = cg(n) for all n,

then f = g.

Corollary 2. If f : [− 1
2 ,

1
2 ] → C is continuous and

∑
n∈Z cf (n)e

2πinx converges
to a continuous function, then

f(x) =
∑
n∈Z

cf (n)e
2πinx.

In particular, if
∑

n∈Z |cf (n)| <∞, then

f(x) =
∑
n∈Z

cf (n)e
2πinx.

Proof. The first statement is an immediate application of the previous corollary.
The second follows from the Weierstrauss M-test: if the sum converges abso-
lutely, the series converges uniformly and hence to a continuous function.
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Exercise 1. By considering the Fourier coefficients of the function f : [− 1
2 ,

1
2 ] →

R, f(x) = x2, compute the sums∑
m>0

1

m2

∑
m>0

(−1)m

m2
.

While this is an important sufficient condition, checking absolute conver-
gence of the sum of the Fourier coefficients can be tedious, and requires that
we determine the Fourier series before knowing whether it is meaningful. For
sufficiently differentiable functions, we can confirm convergence in advance.

Proposition 2. Let f : R → R be a twice continuously differentiable 1-periodic
function. Then there exists a constant B such that |cf (n)| ≤ B

n2 for all n ̸= 0.
In particular,

∑
n∈Z |cf (n)| < ∞, and so the Fourier series of f converges

uniformly to f .

Proof. Integrating by parts and using the 1-periodicity of f(x) and f ′(x), we
get ∫ 1

2

- 12

f(x)e−2πinxdx =
1

2πin

∫ 1
2

- 12

f ′(x)e−2πinxdx

=
−1

4π2n2

∫ 1
2

- 12

f ′′(x)e−2πinxdx.

As f ′′(x) is continuous, it is bounded on [− 1
2 ,

1
2 ] by some constantM , and hence

|cf (n)| = |
∫ 1

2

- 12

f(x)e−2πinxdx |

≤ M

4π2m2
.

3 Cèsaro summation and Dirac families

While, in general, continuity of f(x) is not sufficient to guarantee the conver-
gence of the partial sums

(SNf)(x) :=

N∑
n=−N

cf (n)e
2πinx,

it is enough to guarantee the convergence in a different sense.

Definition 2. Given a sequence of complex numbers c0, c1, . . ., the N
th partial

sum is

sN :=

N∑
n=0

cn.
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The N th Cèsaro sum is defined to be

σN :=
1

N

N−1∑
n=0

sn.

Cèsaro summation gives a way of sometimes assigning a meaninful value to
a not-necessarily-convergent series.

Example 1. Consider the sequence cn = (−1)n. The partial sums

sN =

{
1 if N is even,

0 if N if odd,

do not converge. However

σN =

{
1
2 if N is even,
1
2 (1 +

1
N ) if N is odd,

converges to 1
2 , the “average” values of the series.

Exercise 2. Suppose we have a sequence {cn}n≥0 such that sN → s converges
to a finite limit. Show that σN → s.

We claim that the Cèsaro sum of the Fourier series of a continuous function
f(x) converges to f(x). In the language of Fourier series, the N th Cèsaro sum
is usually referred to as the N th Fejér sum.

Definition 3. For a Riemann integrable function 1-periodic function f , define
its N th Fejér sum to be

fN (x) :=
∑

|n|≤N

(
1− |n|

N

)
cf (n)e

2πinx

for all N ≥ 0.
The N th Fejér kernel is defined by

FN (x) :=
∑

|n|≤N

(
1− |n|

N

)
e2πinx.

Lemma 2. • For f : R → C a Riemann integrable 1-periodic function

fN (x) =

∫ 1
2

- 12

FN (x− y)f(y)dy =

∫ 1
2

- 12

FN (y)f(x− y)dy,

•

FN (x) =

 1
N

(
sin(πNx)
sin(πx)

)2
if x ̸= 0

0 if x = 0
,
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• If (SNf)(x) :=
∑N

n=−N cf (n)e
2πinx, then

fN (x) =
1

N

N−1∑
n=0

(Snf)(x),

which is to say that the Fejér sums are the Cèsaro sums associated to the
Fourier series of f

Exercise 3. Prove the above lemma.

Our goals for the next section is to prove Fejér’s theorem.

Theorem 1. Let f : [− 1
2 ,

1
2 ] → C be a continuous function. Then fN (x)

converges uniformly to f(x).

We will develop a slightly more general theory in order to prove this.

Definition 4. Fix a real R > 0 and let (ρN )N≥1 be a sequence of non-negative
even functions on [−R,R] such that

1

2R

∫ R

−R

ρN (y)dy = 1

for all N . We call (ρN ) a Dirac family if for every 0 < δ < R

lim
N→∞

∫
δ≤|x|≤R

ρN (y)dy = 0.

Remark 1. We can weaken the non-negativity requirement in the definition of
a Dirac family by replacing it with the condition that there exist M > 0 such
that ∫ R

−R

|ρN (y)|dy < M

for all N . We will not consider any such families, but all results we show can
be extended to such families.

Example 2. 1. For R = 2, and ρN = 2Nχ[− 1
N , 1

N ], where

χI(x) :=

{
1 if x ∈ I,

0 otherwise.

Note that ∫
δ<|x|≤ 1

2

ρN (y)dy = 0

for all N > 1
δ , from which it is clear this is a Dirac family.

2. The Fejér kernels (FN ) are a Dirac family for R = 1
2 . Note that∫

δ≤|x|≤ 1
2

FN (y)dy ≤ 1

N

1

(sin(πδ))2
→ 0.
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3. For certain constants ℓN ∈ R, the collection
(
LN (x) = ℓN (1− x2)N

)
is a

Dirac family for R = 1.

Exercise 4. Verify the above examples are Dirac families. Determine ℓN . A
helpful inequality for (LN ) is that there exist positive constants C1, C2 such that

C1n
ne−n ≤ n! ≤ C2(n+ 1)n+1e−n

for all n ≥ 0.

Note that the Dirichlet kernel

DN =

N∑
n=−N

e2πinx =
sin((2N + 1)πx)

sin(πx)

satisfies ∫ 1
2

- 12

DN (y)f(x− y)dy = (SNf)(x)

but is not an example of a Dirac family. It is not non-negative and∫ 1
2

- 12

| DN (y) | dy

grows like log(N), so doesn’t satisfy even the more general conditions. As such,
we cannot apply the following lemma to it.

Lemma 3. Let (ρN ) be a Dirac family on [−R,R] and let f : [−2R, 2R] → C
be Riemann integrable.

1. If x ∈ [−R,R] has that

f(x−) := lim
y→x−

f(y),

f(x+) := lim
y→x+

f(y)

both exist, then

lim
N→∞

1

2R

∫ R

−R

ρN (y)f(x− y)dy =
1

2

(
f(x−) + f(x+)

)
.

In particular, if f is continuous at x, then

lim
N→∞

1

2R

∫ R

−R

ρN (y)f(x− y)dy = f(x).

2. If f is continuous on [−2R, 2R], then

lim
N→∞

1

2R

∫ R

−R

ρN (y)f(x− y)dy

converges uniformly to f(x) on [−R,R].
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Proof. In order to prove the first step, consider x ∈ [−R,R] such that f(x−)
and f(x+) exist. Then, for all ε > 0 there exists δ > 0 such that

| f(x−)− f(x− y) | < ε for all 0 ≤ y < δ

| f(x+)− f(x− y) | < ε for all − δ < y ≤ 0.

Note that, since ρN (y) is even

1

2R

∫ 0

−R

ρN (y)dy =
1

2R

∫ R

0

ρN (y)dy =
1

2

for all N > 0. We then consider

1

2R

∫ R

−R

ρN (y)f(x− y)dy − 1

2

(
f(x−) + f(x+)

)
=

1

2R

∫ 0

−R

ρN (y)
(
f(x− y)− f(x−)

)
dy

+
1

2R

∫ R

0

ρN (y)
(
f(x− y)− f(x+)

)
dy

where we have used the above integral representation of 1
2 . Thus

| 1

2R

∫ R

−R

ρN (y)f(x− y)dy − 1

2

(
f(x−) + f(x+)

)
|= 1

2R

∫ 0

−R

ρN (y) | f(x− y)− f(x−) | dy

+
1

2R

∫ R

0

ρN (y) | f(x− y)− f(x+) | dy

As f is continuous on a compact interval, it is bounded, and so we have

| f(x− y)− f(x+) | ≤| f(x− y) | + | f(x+) |
≤ 2 sup

x∈[−2R,2R]

|f(x)| =: 2||f ||∞.

Therefore

1

2R

∫ R

δ

ρN (y) | f(x− y)− f(x+) | dy ≤ ||f ||∞
R

ρN (y)dy.

Since (ρN ) is a Dirac family, there exists N0 such that for all N > N0, this is
bounded by ε.

By construction

1

2R

∫ δ

0

ρN (y) | f(x− y)− f(x+) | dy ≤ ε

2R

∫ δ

0

ρN (y)dy,

which is bounded above by ε.
Thus

1

2R

∫ R

0

ρN (y) | f(x− y)− f(x+) | dy
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is bounded above by 2ε. We may similarly bound

1

2R

∫ 0

−R

ρN (y) | f(x− y)− f(x−) | dy

and hence

1

2R
|
∫ R

−R

ρN (y)f(x− y)dy − 1

2

(
f(x−) + f(x+)

)
< 4ε

for all N larger than some N0. Therefore

lim
N→∞

1

2R

∫ R

−R

ρN (y)f(x− y)dy =
1

2

(
f(x−) + f(x+)

)
.

In order to prove the second statement, we largely recreate the above proof.
Since f is continuous on [−2R, 2R], it is uniformly continuous and so for all
ϵ > 0 there exist δ > 0 such that

| f(x− y)− f(y) |< ϵ

for all |y| < δ and all x ∈ [−R,R] (or any interval strictly contained within
[−2R, 2R].

We can write

1

2R

∫ R

−R

ρN (y)f(x− y)dy − f(x) =
1

2R

∫ R

−R

ρN (y) (f(x− y)− f(x)) dy

=
1

2R

∫
δ≤|y|≤R

ρN (y) (f(x− y)− f(x)) dy

+
1

2R

∫
|y|≤δ

ρN (y) (f(x− y)− f(x)) dy

Similarly to above, we must therefore have

1

2R

∫
δ≤|y|≤R

ρN (y)|f(x− y)− f(x)|dy ≤ ||f ||∞
R

∫
δ≤|y|≤R

ρN (y)dy

which we can bound above by ε for N sufficiently large. We also have

1

2R

∫
|y|≤δ

ρN (y)|(f(x− y)− f(x)|dy ≤ ε

2R

∫
|y|≤δ

ρN (y)dy

is bounded above by ε for all N . Hence, for sufficiently large N

| 1

2R

∫ R

−R

ρN (y)f(x− y)dy − f(x) |< 2ε

for all x ∈ [−R,R]. Therefore

1

2R

∫ R

−R

ρN (y)f(x− y)dy

converges uniformly to f(x).
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Corollary 3 (Fejér’s Theorem). For f a continuous 1-periodic function, fN →
f uniformly

Proof. This follows from applying the above lemma with ρN = FN .

Corollary 4. Trigonometric polynomials are dense in the space of continuous
1-periodic functions with respect to the || − ||∞ norm, i.e. for a given contin-
uous 1-periodic function f and every ε > 0, there exists a Laurent polynomial∑N

n=−N ane
2πinx in e2πix such that

||
N∑

n=−N

ane
2πinx − f(x)||∞ < ε

Proof. Take
N∑

n=−N

ane
2πinx = fN (x)

for N sufficiently large.
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Week 2

4 Hardy’s Tauberian Theorem

Let f : R → C be a 1-periodic, Riemann integrable function, and denote by
cf : Z → C its Fourier coefficients

cf (n) :=

∫ 1
2

−1
2

f(x)e−2πinxdx.

Thus far, we have shown that for f continuous∑
n∈Z

|cf (n)| <∞ ⇒
∑
n∈Z

cf (n)e
2πinx = f(x)

and it converges uniformly. A sufficient condition for this is for f to be twice
continuously differentiable. We also have Fejér’s Theorem, which guarantees
convergence of the Fejér sums

lim
N→∞

∑
|n|≤N

(
1− |n|

N

)
cf (n)e

2πinx =
1

2

(
f(x+) + f(x−)

)
However, neither of these apply to the Fourier series of something like f(x) = x
for x ∈ (− 1

2 ,
1
2 ], or a square wave

f(x) =

{
1 if 0 ≤ x ≤ 1

2 ,

−1 if − 1
2 < x < 0,

both of which have Fourier coefficients that decay like 1
n . Nevertheless, numeri-

cally the partial sums of their Fourier series seem to converge to 1
2 (f(x

+) + f(x−)).
We will show that this is indeed always the case. In fact, we will prove something
a bit more general.

Theorem 2 (Hardy’s Tauberian Theorem). Let c0, c1, . . . ∈ C be a sequence of

complex numbers and let sN =
∑N

n=0 cn. Suppose that the Cèsaro limit exists

s = lim
N→∞

1

N
(s0 + · · ·+ sN−1)

and that there exists a constant C > 0 such that n|cn| ≤ C for all n > 0. Then
limN→∞ sN exists and is equal to s.

Corollary 5. Let f : R → C be a 1-periodic Riemann integrable function.
Suppose that there exists a constant C > 0 such that |ncf (n)| ≤ C for all n ̸= 0.
Then, at every x for which the one sided limits f(x+) and f(x−) exist, we have

limN→∞

N∑
n=−N

cf (n)e
2πinx =

1

2

(
f(x+) + f(x−)

)
.
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Proof. Apply Hardy’s Tauberian theorem to c0 = cf (0), cn = cf (n)e
2πinx +

cf (−n)e−2πinx. From our Key Lemma last week, specifically the case of Fejér’s
theorem, the Fejer sums of f converge to

1

2

(
f(x+) + f(x−)

)
and the N th Fejer sum is equal to

∑
|n|≤N

(
1− |n|

N

)
cf (n)e

2πinx =
1

N

N−1∑
n=0

(Snf)(x).

Remark 2. Note that, unlike our Key Lemma or Fejer’s theorem, this corollary
only tells us about pointwise convergence, not uniform convergence.

Proof. Let c0, c1, . . . ∈ C be a sequence of complex numbers and define

sN := c0 + c1 + · · ·+ cN ,

σN :=
1

N

N−1∑
n=0

sn,

κN := NσN =

N−1∑
n=0

(N − n)cn.

We assume s = limN→∞ σN exists. Note that

κN+ℓ − κN =

N+ℓ−1∑
n=0

(N + ℓ− n)cn −
N−1∑
n=0

(N − n)cn

=

N−1∑
n=0

(N + ℓ− n)cn +

N+ℓ−1∑
n=N

(N + ℓ− n)cn −
N−1∑
n=0

(N − n)cn

= ℓ

N−1∑
n=0

cn +

ℓ−1∑
n=0

(ℓ− n)cN+n

= ℓsN−1 + SN,ℓ

for every ℓ ≥ 1. Hence

sN−1 =
1

ℓ
(κN+ℓ − κN )− SN,ℓ

ℓ
.

Since we have assumed there exists C > 0 such that n|cn| ≤ C for all n > 0, we
have that

|SN,ℓ| ≤
ℓ−1∑
n=0

(ℓ− n)|cN+ℓ| ≤
ℓ−1∑
n=0

ℓC

N + k
≤

ℓ−1∑
n=0

ℓC

N
=
ℓ2C

N
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Next note that
1

ℓ
(κN+ℓ − κN ) =

N + ℓ

ℓ
σN+ℓ −

N

ℓ
σN .

Let δN := σN − s. As σN → s, we must have δN → 0. We can then rewrite

1

ℓ
(κN+ℓ − κN ) =

(
1 +

N

ℓ

)
δN+ℓ −

N

ℓ
δN + s

and hence

sN−1 − s =

(
1 +

N

ℓ

)
δN+ℓ −

N

ℓ
δN − SN,ℓ

ℓ

for all N and all ℓ. We therefore get an upper bound of

|sN−1 − s| ≤
(
1 +

N

ℓ

)
|δN+ℓ|+

N

ℓ
|δN |+ ℓC

N
.

Now fix ε > 0. For everyN ≥ 1, we can find ℓN > 0 such that ℓN ≤ εN < ℓN+1,
and so N

ℓN+1 ≤ 1
ε . Since our bound holds for all ℓ, it holds for ℓN and so we

have
|sN−1 − s| ≤ (1 + ε−1)|δN+ℓN |+ ε−1|δN |+ εC

As the δN+ℓN and δN tend to 0 as N → ∞, we can find make |sN−1 − s|
arbitrarily small and hence limN→∞ sN = s

4.1 Fejer’s counterexample

At this point in the course, all the examples of Fourier series have converged, at
least pointwise. We will now construct an example due to Fejer of a continuous
function for which the Fejer sums converge, but the partial sums fail to converge.
Specifically, we will show that the even 1-periodic function

f(x) :=


∑

k≥1
1
k2 sin

(
(2n

3+1 + 1)πx
)

for 0 ≤ x ≤ 1
2 ,

−
∑

k≥1
1
k2 sin

(
(2n

3+1 + 1)πx
)

for − 1
2 ≤ x ≤ 0,

f(x+ 1) for all x

has limN→∞(S2N3 f)(0) = ∞.
We first note that f is a well defined continuous (by the Weierstrauss M-test)

even periodic function. As f is even, its Fourier series can be expressed as a
cosine series with partial sums

(SNf)(x) =

N∑
n=0

An cos(2πnx)

where

A0 = 2

∫ 1
2

0

f(x)dx , An = 4

∫ 1
2

0

f(x) cos(2πnx)dx.
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Since f is continuous, Fejer’s theorem tells us that the Fejer sums converge to
f(x), so

lim
N→∞

(σNf)(0) = f(0) = 0.

In order to show that the partial sums do not converge, we first define

λn,p := 4

∫ 1
2

0

sin ((2p+ 1)πx) cos(2πnx)dx,

ΛN,p :=

N∑
n=1

λn,p.

By swapping the order of summation and integration, we have that

An =
∑
k≥1

λn,2k3

k2

and hence the partial sums of f at 0 are given by

(SNf)(0) = A0 +

N∑
n=1

∑
k≥1

λn,2k3

k2
= A0 +

∑
k≥1

ΛN,2k3

k2
.

It will suffice to show that ΛN,p ≥ 0 and ΛN,N ≥ 1
4π lnN . As 1

k2 ≥ 0, we must
have that

S2N3 f)(0) ≥ A0 +
1

4πN2
ln 2N

3

= A0 +
N ln 2

4π

as a sum of non-negative terms is bounded below by any individual term. This
clearly tends to infinity as N → ∞, so (SNf)(0) cannot converge to a finite
limit.

Let us prove our claims about ΛN,p. First note that

sin ((2p+ 1)πx) cos(2πnx) =
1

2
(sin((2p+ 2n+ 1)πx) + sin((2p− 2n+ 1)πx))

and hence

λn,p =
1

4π

(
1

p+ n+ 1
2

+
1

p− n+ 1
2

)
.

Then

ΛN,p =
1

4π

(
N∑

n=0

1

p+ n+ 1
2

+
1

p− n+ 1
2

)

=
1

4π

p+N∑
n=p

1

n+ 1
2

+

p∑
n=p−N

1

n+ 1
2


=

1

4π

 1

p+ 1
2

+

p+N∑
n=p−N

1

n+ 1
2

 .
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If p > N , this is a sum of positive terms, and is therefore positive. If p < N ,
then

ΛN,p =
1

4π

 1

p+ 1
2

+

N−p∑
n=p−N

1

n+ 1
2

+

p+N∑
n=N+1−p

1

n+ 1
2


=

1

4π

 1

p+ 1
2

+
1

N − p+ 1
2

+

p+N∑
n=N+1−p

1

n+ 1
2


which is the sum of positive terms and is therefore positive.

Finally, if p = N , we note that 1
x+ 1

2

is monotonically decreasing, and so we

can compare the sum ΛN,N to the associated integral to get

ΛN,N ≥ 1

4π

2N∑
n=0

1

n+ 1
2

≥ 1

4π

∫ 2N+1

0

dx

x+ 1
2

,

the right hand side of which evaluates to

1

4π

(
ln(2N +

3

2
)− ln(

1

2
)

)
≥ 1

4π
lnN.

5 Solving PDEs using Fourier series

Fourier series methods can be used to find series solutions to a number of families
of partial differential equations. We will illustrate five such examples. Our set
up will always be as follows. Let

u(x, t) : [0,
1

2
]× R≥0 → R

be continuously differentiable in each variable. We will assume we have some
set of boundary conditions like

u(0, t) = u(
1

2
, t) = 0

or

∂tu(0, t) = ∂tu(
1

2
, t) = 0,

and initial conditions given by

(∂x)
nu(x, 0) = fn(x)

for some finite set of n ≥ 0 and Riemann integrable functions fn(x) : [0,
1
2 ] → R.

We may, alternatively, have a limiting condition such as

lim
t→∞

u(x, t) = 0

16



or an estimate on the growth of the function u(x, t).
In order to apply Fourier series methods, we need to be able to extend

a Riemann integrable function f : [0, 12 ] → R to a 1-periodic function on R.
While this can be done in any number of ways, there are two choices for which
the Fourier series will be particularly simple.

5.0.1 Even extension

Define

feven(x) :=


f(x) x ∈ [0, 12 ],

f(−x) x ∈ [− 1
2 , 0],

feven(x+ 1) = feven(x).

If f is continuous, this defines an even 1-periodic continuous function. It has
an associated cosine series, and if f is twice continuously differentiable, feven
will have absolutely summable Fourier coefficients. This is a good choice if you
require boundary conditions like ∂tu(0, t) = ∂tu(

1
2 , t), as f

′(0) = f ′( 12 ) = 0 for
any f expressed as a cosine series.

Assuming that feven has absolutely summable Fourier coefficients, it has
cosine series

f(x) =
∑
n≥0

An cos(2πnx)

where

A0 = 2

∫ 1
2

0

f(x)dx, An = 4

∫ 1
2

0

f(x) cos(2πnx)dx.

5.0.2 Odd extension

Define

fodd(x) :=


f(x) x ∈ [0,− 1

2 ],

−f(−x) x ∈ (− 1
2 , 0),

fodd(x+ 1) = fodd(x).

This only defines a continuous 1-periodic function if f(0) = f( 12 ) = 0. Oth-
erwise, the extension will be discontinuous and we would need to consider one
sided limits when evaluating the Fourier series. The Fourier series can be ex-
pressed as a sine series, and is a good choice if you require boundary conditions
like u(0, t) = u( 12 , t).

Assuming fodd has absolutely summable Fourier coefficients, it has sine series

f(x) =
∑
n≥1

Bn sin(2πnx)

where

Bn = 4

∫ 1
2

0

f(x) sin(2πnx)dx.
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5.1 The heat equation with fixed end temperatures

Consider a rod of length 1
2 such that the ends of the rod are kept at a constant

temperature 0. At t = 0 the initial temperature distribution is given by a
Riemann integrable function f(x) such that f(0) = f( 12 ) = 0, and such that∑

n≥1 |Bn| ≤ ∞. Let the temperature of the rod be given by the function
u(x, t). The heat distribution is then determined by the following data, where
α > 0 is a positive constant related to the conductivity of the rod.

α∂tu = ∂2xu for all (x, t) ∈ [0,
1

2
]× (0,∞),

u(0, t) = u(
1

2
, t) = 0 for all t > 0

u(x, 0) = f(x).

From the above discussion, f is suited to an odd extension, so we take fodd
and compute its Fourier expansion as a sine series, which is convergent by
assumption. We therefore have

u(x, 0) = f(x) =
∑
n≥1

Bn sin(2πnx)

Based on our computations from the first lecture, a reasonable Ansatz has the
t dependence seperated from the x dependence. One such guess would be

u(x, t) =
∑

Bn(t) sin(2πnx)

for some continuously differentiable functions Bn(t) such that

Bn(0) = Bn,∑
n≥1

|Bn(t)| ≤ ∞.

Such a series is uniformly convergent to a continuous function, and satisfies
both our boundary and initial conditions. Filling this guess into our differential
equation, and assuming we can swap the order of differentiation and summation
(which is valid if our series is uniformly convergent), we get∑

n≥1

αB′
n(t) sin(2πnx) =

∑
n≥1

−4π2n2Bn(t) sin(2πnx).

From the uniqueness of Fourier coefficients, we want that

B′
n(t) =

−4π2n2

α
Bn(t)

for all n ≥ 1. This ODE (with initial condition Bn(0) = Bn) is solved by

Bn(t) = Bne
− 4π2n2t

α .

18



As
∑

n≥1 |Bn(t)| ≤
∑

n≥1 |Bn| ≤ ∞ for all t ≥ 0, the series

u(x, t) =
∑
n≥1

Bne
− 4π2n2t

α sin(2πnx)

is uniformly convergent and satisfies the conditions of our PDE, giving our
solution.

Remark 3. For differential equations coming from physical systems, a useful
sanity check can be to consider the behaviour as t→ ∞. In this situation, we see
that u(x, t) → 0, which makes physical sense, as we would expect the temperature
to average out across the rod, and if the ends are kept at constant temperature
0, energy must be leaving the system.

5.2 The heat equation with no heat out flux

Consider the same situation as above, but instead of maintaining the ends of the
rod at constant temperature, we insulate them so that no heat can enter or exit
the system. We take an initial heat distribution f(x) with f ′(0) = f ′( 12 ) = 0.
The heat distribution is then determined by the following data.

α∂tu = ∂2xu for all (x, t) ∈ [0,
1

2
]× (0,∞),

∂xu(0, t) = ∂xu(
1

2
, t) = 0 for all t > 0

u(x, 0) = f(x).

Here, f is suited to an even extension, so we compute the Fourier expansion of
feven as a cosine series. We assume

∑
n≥0 |An| <∞, so that the cosine series is

uniformly convergent. As in the previous case, we make an Ansatz of

u(x, t) =
∑
n≥0

An(t) cos(2πinx)

for some continuously differential functions An(t) such that

An(0) = An,∑
n≥0

|An(t)| ≤ ∞.

Such a series is uniformly convergent to a continuous function, and satisfies
both our boundary and initial conditions. Filling this guess into our differential
equation, and assuming we can swap the order of differentiation and summation
(which is valid if our series is uniformly convergent), we get∑

n≥0

αA′
n(t) cos(2πnx) =

∑
n≥0

−4π2n2An(t) cos(2πnx).
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From the uniqueness of Fourier coefficients, we want that

A′
n(t) =

−4π2n2

α
An(t)

for all n ≥ 1. This ODE (with initial condition An(0) = An) is solved by

An(t) = Ane
− 4π2n2t

α .

As
∑

n≥0 |An(t)| ≤
∑

n≥0 |An| ≤ ∞ for all t ≥ 0, the series

u(x, t) =
∑
n≥0

Ane
− 4π2n2t

α cos(2πnx)

is uniformly convergent and satisfies the conditions of our PDE, giving our
solution.

Remark 4. For differential equations coming from physical systems, a useful
sanity check can be to consider the behaviour as t → ∞. In this situation,
we see that u(x, t) → A0, which makes physical sense, as we would expect the
temperature to average out across the rod, and no energy enters or exits the
system.

5.3 The inhomogeneous heat equation

Suppose we have a Riemann integrable f : [0, 12 ] → R such that f(0) = f( 12 ) = 0,
and Riemann integrable ϕ : [0, 12 ]× R≥0 → R such that phi(0, t) = ϕ( 12 , t) = 0.
Suppose that the odd extensions have sine series

f(x) =
∑
n≥1

Bn sin(2πnx), ϕ(x, t) =
∑
n≥1

Dn(t) sin(2πnx)

such that
∑

n≥1 |Bn| ≤ ∞ and
∑

n≥1 |Dn(t)| ≤ ∞. We think of ϕ(x, t) as heat
being inputted to the system. The heat distribution is then determined by the
data

α∂tu = ∂2xu+ ϕ(x, t) for all (x, t) ∈ [0,
1

2
]× (0,∞),

u(0, t) = u(
1

2
, t) = 0 for all t > 0

u(x, 0) = f(x).

From the above discussion, f is suited to an odd extension, so we take fodd
and compute its Fourier expansion as a sine series, which is convergent by
assumption. We therefore have

u(x, 0) = f(x) =
∑
n≥1

Bn sin(2πnx)
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Based on our computations from the first lecture, a reasonable Ansatz has the
t dependence seperated from the x dependence. One such guess would be

u(x, t) =
∑

Bn(t) sin(2πnx)

for some continuously differentiable functions Bn(t) such that

Bn(0) = Bn,∑
n≥1

|Bn(t)| ≤ ∞.

Such a series is uniformly convergent to a continuous function, and satisfies
both our boundary and initial conditions. Filling this guess into our differential
equation, and assuming we can swap the order of differentiation and summation
(which is valid if our series is uniformly convergent), we get∑

n≥1

αB′
n(t) sin(2πnx) =

∑
n≥1

−4π2n2Bn(t) sin(2πnx) +
∑
n≥1

Dn(t) sin(2πnx).

Comparing coefficients, we wish to solve

B′
n(t) = −4π2n2

α
Bn(t) +Dn(t)

for all n. We therefore need to solve a first order inhomogeneous ODE, and will
apply the method of integrating factors (see supplementary note) to determine
that

Bn(t) = Bne
− 4π2n2t

α +
1

α

∫ t

0

e−
4π2n2(t−z)

α Dn(z)dz

So long as Dn(z) doesn’t grow too fast, we will still have
∑

n≥1 |Bn(t)| ≤ ∞,
and so we can conclude that

u(x, t) =
∑
n≥1

Bn(t) sin(2πnx)

solves our differential equation.

5.4 Solving the wave equation with fixed endpoints

The motion of something like a vibrating string is determined by the wave equa-
tions with appropriate boundary and initial conditions. The height of vibrating
string with fixed endpoints is determined by the following data:

α2∂2t u = ∂2xu+ ϕ(x, t) for all (x, t) ∈ [0,
1

2
]× (0,∞),

u(0, t) = u(
1

2
, t) = 0 for all t > 0

u(x, 0) = f(x),

∂tu(x, 0) = g(x),
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where α is a non-zero real constant, which we can assume to be positive, and f
and g are Riemann integrable functions such with absolutely convergent Fourier
expansions

f(x) =
∑
n≥1

Bn sin(2πnx),

g(x) =
∑
n≥1

Cn sin(2πnx).

Given the boundary conditions, a reasonable Ansatz would be

u(x, t) =
∑
n≥1

Un(t) sin(2πnx)

where

Un(0) = Bn,

U ′
n(0) = Cn,∑

n≥1

|Un(t)| ≤ ∞.

Such a series is uniformly convergent to a continuous function, and satisfies
both our boundary and initial conditions. Filling this guess into our differential
equation, and assuming we can swap the order of differentiation and summation
(which is valid if our series is uniformly convergent), we get∑

n≥1

α2U ′′
n (t) sin(2πnx) = −4π2n2Un(t) sin(2πnx).

Comparing coefficients, we want Un to solve the ODE

U ′′
n (t) = −

(
2πn

α

)
Un(t).

Given our initial conditions, this has solution

Un(t) = Bn cos(
2πn

α
x) +

α

2πn
Cn sin(

2πn

α
x).

The triangle inequality tells us that∑
n≥1

|Un(t)| ≤
∑
n≥1

|Bn|+
∑
n≥1

|Cn| ≤ ∞

and so we conclude that

u(x, t) =
∑
n≥1

(
Bn cos(

2πn

α
x) +

α

2πn
Cn sin(

2πn

α
x)

)
sin(2πnx)

is a solution to the wave equation.

Remark 5. While it might seem initially unphysical that u(x, t) is periodic
in time when a plucked string gradually stops vibrating, in an ideal world there
would be no energy lost from the system, so this repeating behaviour makes sense
here.
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5.5 A variation on the Laplace equation

The Laplace equation usually refers to a differential equation

∂2xu(x, y) + ∂2yu(x, y) = 0

for a function
u : {(x, y) | x2 + y2 ≤ 1} → R

on a circle. This differential equation has connections to electrostatics, gravita-
tion, fluid dynamics, and complex analysis. We will consider a modified version
that could be used to model a vibrating string with energy loss. Specifically,
given α > 0 and f as for the wave equation, we will find u : [0, 12 ] × R≥0 → R
satisfying

−α2∂2t u = ∂2xu+ ϕ(x, t) for all (x, t) ∈ [0,
1

2
]× (0,∞),

u(0, t) = u(
1

2
, t) = 0 for all t > 0

u(x, 0) = f(x),

lim
t→∞

u(x, t) = 0.

Proceeding as before, we find that a candidate for u(x, t) is given by the series

u(x, t) =
∑
n≥1

(
Pne

2πnt
α +Qne

− 2πnt
α

)
sin(2πnx)

From the condition that u(x, t) → 0, we see that we should Pn = 0 for every n,
as otherwise this exponential term would dominate the growth as t→ ∞. This
also ensures absolute summability of the Fourier coefficients and hence uniform
convergence. Therefore

u(x, t) =
∑
n≥1

Bne
− 2πnt

α sin(2πnx)

is the desired solution. This is an example of a system exhibiting exponential
decay - in a number of practical situations, you may not have the necessary
number of initial conditions to uniquely determine a solution, but imposing
growth constraints such as exponential decay can also help us in determining a
solution.
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Week 3

6 Inner product spaces

Definition 5. Let V be a complex vector space, possibly infinite dimensional.
An inner product on V is a function

⟨·, ·⟩ : V × V → C

such that

1. Linearity:
⟨λ1v1 + λ2v2, w⟩ = λ1⟨v1, w⟩+ λ2⟨v2, w⟩,

2. Conjugate linearity:

⟨v, λ1w1 + λ2w2⟩ = λ̄1⟨v, w1⟩+ λ̄2⟨v, w2⟩,

3. Conjugate symmetric:
⟨v, w⟩ = ⟨w, v⟩,

4. Positive semidefinite:

∥f∥2 := ⟨f, f, ⟩ ∈ R≥0,

5. Non-degenerate: ∥f∥ = 0 if and only if f = 0.

A complex vector space V with a given inner product is called an inner product
space. The function

∥ · ∥ : V → R≥0

is called a norm.

Example 3. Let V = Cn. The complex dot product

⟨v, w⟩ :=
n∑

k=1

vkw̄k

defines an inner product on V .

Example 4. Define the space of square summable sequences to be

ℓ2 := {(an)n≥1 | an ∈ C,
∑
n≥1

|an|2 <∞}.

This is a vector space equipped with component-wise addition and scalar multi-
plication.
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Proof. Note that

λ(an)n≥1 = (λan)n≥1,
∑
n≥1

|λan|2 = |λ|2
∑
n≥1

|an|2 <∞.

Hence ℓ2 is closed under scalar multiplication. To see that it is closed under
addition, it suffices to show that∑

n≥1

|an + bn|2 =
∑
n≥1

|an|2 + 2|anbb|+ |bn|2 <∞

Note that, since absolute values are real,

|an|2 − 2|anbn|+ |bn|2 = (|an| − |bn|)2 ≥ 0

and hence 2|anbn| ≤ |an|2 + |bn|2. Thus∑
n≥1

|an + bn|2 ≤
∑
n≥1

2|an|2 + 2|bn|2 = 2
∑
n≥1

|an|2 + 2
∑
n≥1

|bn|2 <∞.

We define an inner product on ℓ2 by

⟨(an)n≥1, (bn)n≥1⟩ :=
∑
n≥1

anb̄n.

This converges because it converges absolutely, from the same argument used in
showing ℓ2 is a vector space, and it is easy to check that it satisfies the axioms
of an inner product.

Remark 6. In the exercise session, we will establish the convergence of the ℓ2

inner product by expressing it in terms of norms. This is a useful approach when
given a norm on a vector space and a candidate for an inner product where the
convergence of the inner product is unknown.

Example 5. Let

C0
1 := {f : R → C | f continuous and 1-periodic}.

This is easily seen to be a vector space with addition and scalar multiplication
defined pointwise:

(f + g)(x) := f(x) + g(x),

(λf)(x) := λf(x).

We define a map C0
1 × C0

1 → C by

⟨f, g⟩ :=
∫ 1

2

- 12

f(x)g(x)dx.
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It is easy to check that this satisfies the first four properties of an inner product.
To see that this defines a non-degenerate inner product, consider non-zero f ∈
C0
1 . As f is non-zero, there is a point x0 ∈ R such that f(x0) ̸= 0. Without loss

of generality, we may assume x0 = 0. By continuity, there exists δ > 0 such
that

|f(x)|2 ≥ |f(0)|2

2
> 0

for all |x| < δ. As |f(x)|2 ≥ 0 for all x, we must have

∥f∥2 =

∫ 1
2

- 12

|f(x)|2dx ≥
∫
|x|<δ

|f(x)|2dx ≥
∫
|x|<δ

|f(0)|2

2
dx > 0.

Hence ∥f∥ = 0 if and only if f = 0.

Remark 7. We could alternatively consider

V := {f : R → C | f Riemann integrable and 1-periodic},

equipped with the same map. Unfortunately

⟨f, g⟩ :=
∫ 1

2

- 12

f(x)g(x)dx

is not non-degenerate on V : there exist integrable 1-periodic non-zero functions
with square integral 0. For example

f(x) =

{
0 x ̸∈ Z,
1 x ∈ Z.

However, many results about the space of continuous 1-periodic functions can
be lifted to results about integrable 1-periodic functions via continuous approxi-
mation.

A short, but often useful observation is that for any v, w in an inner product
space V ,

∥v + w∥2 = ∥v∥2 + ∥w∥2 + 2ℜ⟨v, w⟩.
In the case of V = Cn, and v, w real vectors, this is precisely the statement of
the generalised Pythagorean theorem

a2 + b2 = c2 − 2ab cos(θ).

It is often easier to compute norms than it is to compute inner products.
If we only need to obtain a bound on an inner product, a valuable tool is the
Cauchy Schwartz inequality.

Lemma 4 (Cauchy Schwartz inequality). Let V be an inner product space.
Then for all v, w ∈ V ,

|⟨v, w⟩| ≤ ∥v∥∥w∥
with equality if and only if there exists α ∈ C such that v = αw.
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Proof. The claim is clearly true if ∥w∥ = 0 or |⟨v, w⟩| = 0, we we will assume

otherwise. Let η = |⟨v,w⟩|
⟨v,w⟩ and note that

0 ≤ ∥tηv − w∥2 for all t ∈ R.

Expanding this out, we see that

0 ≤ t2∥v∥2 − 2tℜη⟨v, w⟩+ ∥w∥2

= t2∥v∥2 − 2tℜ|langlev, w⟩|+ ∥w∥2

= t2∥v∥2 − 2t|langlev, w⟩|+ ∥w∥2

=

(
t∥v∥ − |⟨v, w⟩|

∥v∥

)2

+ ∥w∥2 − |⟨v, w⟩|2

∥v∥2

for all real t. Taking t = |⟨v,w⟩|
∥v∥ to get that

0 ≤ ∥w∥2 − |⟨v, w⟩|2

∥v∥2

or
|⟨v, w⟩|2 ≤ ∥v∥2∥w∥2.

Since all quantities are positive, we can take the square root to obtain the
Cauchy-Schwartz inequality. We obtain equality if and only if

0 = ∥tηv − w∥

i.e there exists α ∈ C such that v = αw.

A corollary of this is that the triangle inequality holds in all inner product
spaces

Corollary 6. For any v, w in an inner product space V ∥v +w∥ ≤ ∥v∥+ ∥w∥.

Proof. Note that
∥v + w∥2 = ∥v∥2 + 2ℜ⟨v, w⟩+ ∥w∥2

and that ℜ⟨v, w⟩ ≤ |⟨v, w⟩|. By the Cauchy-Schwartz inequality

|⟨v, w⟩| ≤ ∥v∥∥w∥.

Hence
∥v + w∥2 ≤ ∥v∥2 + 2∥v∥∥w∥+ ∥w∥2 = (∥v∥+ ∥w∥)2 .

The triangle inequality is the square root of this inequality.

Example 6. For V = C2 and v, w ∈ R2, the Cauchy-Schwartz inequality tells
us that

|⟨v, w⟩| ≤ ∥v∥∥w∥

For a pair of vectors in R2, the inner product is the dot product is |⟨v, w⟩| =
∥v∥∥w∥ cos(θ) where θ is the smaller angle between v and w. Hence | cos(θ)| ≤ 1.
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Example 7. Let V be the space of continuous functions on [0, 1] equipped with
the inner product

⟨f, g⟩ :=
∫ 1

0

f(x)g(x)dx.

This lets us bound difficult integrals via the Cauchy-Schwartz inequality:

0.592 . . . =

∣∣∣∣∫ 1

0

√
x cosxdx

∣∣∣∣ ≤ (∫ 1

0

xdx

) 1
2
(∫ 1

0

cosxdx

) 1
2

=
sin(1)

2
= 0.648 . . .

6.1 Orthonormal sets and best approximation

Definition 6. Let V be an inner product space. A pair of vectors (v, w) are
called orthogonal ⟨v, w⟩ = 0. A set of vectors S is called orthogonal each pair
of distinct vectors v ̸= w ∈ S are othogonal. A set of vectors S is called
orthonormal if it is orthogonal and ∥v∥ = 2 for every v ∈ S.

Lemma 5 (Pythagorean theorem). If v, w are orthogonal vectors in an inner
product space V , then

∥v + w∥2 = ∥v∥2 + ∥w∥2.

Proof. As noted previously

∥v + w∥2 = ∥v∥2 + 2ℜ⟨v, w⟩+ ∥w∥2.

If ⟨v, w⟩ = 0, we obtain the desired result.

Example 8. The standard basis of Cn is an orthonormal set.

Example 9. Let C0
1 be the space. The set {en(x) = e2πinx} is an orthonormal

set.

Example 10. Let V be the inner product space of continuous functions on
[−1, 1] with inner product

⟨f, g⟩ =
∫ 1

0

f(x)g(x)dx.

Then S = {1, x, x2 − 1
3} is an orthogonal set.

Given an orthonormal set in an inner product space V , one might hope that
we can execute a Gram-Schmidt-like producedure to express any vector v ∈ V
in terms of the orthonormal set. This is possible in a finite dimensional vector
space, but it is not always possible in an infinite dimensional vector space.
However, we can show that such a procedure constructs a good approximation.

Proposition 3 (Best approximation). Let V be an inner product space and let
{en}n∈S be a finite set of orthonormal vectors in V and choose v ∈ V . Define
cn := ⟨v, en⟩. Then for any collection of complex numbers {bn}n∈S

∥v −
∑
n∈S

cnen∥ ≤ ∥v −
∑
n∈S

bnen∥
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with equality if and only if bn = cn for every n ∈ S. That is to say, the best
approximation of v is given by

∑
n∈S cnen.

Proof. Note that, for any {an}n∈S ,

⟨v −
∑
n∈S

cnen,
∑
n∈S

anen⟩ =
∑
n∈S

ān⟨v, en⟩ −
∑

m,n∈S

cnām⟨en, em⟩

=
∑
n∈S

cnān +
∑
n∈S

cnān = 0.

Hence

∥v −
∑
n∈S

cnen +
∑
n∈S

anen∥2 = ∥v −
∑
n∈S

cnen∥2 +
∑
n∈S

∥anen∥2

= ∥v −
∑
n∈S

cnen∥2 +
∑
n∈S

|an|2

and thus
∥v −

∑
n∈S

cnen +
∑
n∈S

anen∥2 ≥ ∥v −
∑
n∈S

cnen∥2.

Let an = cn − bn to get

∥v −
∑
n∈S

bnen∥2 ≥ ∥v −
∑
n∈S

cnen∥2.

We may similarly use the Pythagorean theorem to prove Bessel’s inequality.

Proposition 4 (Bessel’s inequality). Let V be an inner product space and let
{en}n∈S be a finite set of orthonormal vectors in V . Let v ∈ V . Define cn :=
⟨v, en⟩. Then ∑

n∈S

|cn|2 ≤ ∥v∥2.

Proof. Write v = v −
∑

n∈S cnen +
∑

n∈S cnen. Applying the Pythagorean
theorem and using ∥en∥ = 1, we get

∥v∥2 = ∥v −
∑
n∈S

cnen∥2 +
∑
n∈S

|cn|2∥en∥2

and hence
∥v∥2 ≥

∑
n∈S

|cn|2.

While the proofs of both of the above assume S is finite, there is nothing
stopping us from taking a limit over growing S to obtain that both the best
approximation theorem and Bessel’s inequality hold for infinite ordered sets i.e.
S = Z.

29



7 Applications to Fourier analysis

From here, we will consider only the case of V = C0
1 , continuous 1-periodic

functions equipped with inner product

⟨f, g⟩ :=
∫ 1

2

- 12

f(x)g(x)dx.

We will refer to

∥f∥ =

∫ 1
2

- 12

|f(x)|2dx

as the L2 norm.
We have three notable infinite orthonormal sets in C0

1 .

7.0.1 Exponential functions

Consider the orthonormal set {en(x) := e2πinx}n∈Z. Then

⟨f, en⟩ = cf (n).

Taking limits of Bessel’s inequality says that∑
n∈Z

|cf (n)|2 ≤
∫ 1

2

- 12

|f(x)|2dx.

The best approximation theorem says that

(SNf)(x) :=

N∑
n=−N

cf (n)e
2πinx

is the best approximation of f in trigonometric polynomials of degree at most
N with respect to the L2 norm.

7.0.2 Sine series

Consider the orthonormal set {en(x) := 2 sin(2πnx)}n≥1. Then

⟨f, en⟩ = Bn.

Bessel’s inequality says that∑
n≥1

|Bn|2 ≤
∫ 1

2

- 12

|f(x)|2dx.

The best approximation theorem says that∑
n≥1

Bn sin(2πnx)

is the best approximation of f via sine series of length at most N with respect
to the L2 norm.
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7.0.3 Cosine series

Consider the orthonormal set {en(x) := 2 cos(2πnx)}n≥0. Then

⟨f, en⟩ = An.

Bessel’s inequality says that

∑
n≥0

|An|2 ≤
∫ 1

2

- 12

|f(x)|2dx.

The best approximation theorem says that∑
n≥0

An cos(2πnx)

is the best approximation of f via cosine series of length at most N with respect
to the L2 norm.

Remark 8. Note that at no point in the proof of Bessel’s inequality or the
best approximation theorem did we use non-degeneracy of the inner product.
Therefore both these results hold for the space R1 of Riemann integrable 1-
periodic functions, and so do the above discussions.

The best approximation theorem suggests that we should expect (SNf) → f
as N → ∞ in the L2 norm, i.e.

∥f − SNf∥ → 0

for continuous 1-periodic f . This is precisely the case, and tells us that all the
information regarding integrals of continuous 1-periodic functions are encoded
in the Fourier series.

Proposition 5. For f a continuous 1-periodic function ∥f − SNf∥ → 0.

Proof. Given ε > 0, we showed in Week 1, Corollary 4, we can find a trigono-
metric polynomial of degree N

p(x) =

N∑
n=−N

pne
2πinx

such that
|f(x)− p(x)| ≤ ε

for all x ∈ [− 1
2 ,

1
2 ]. Squaring this and integrating gives that∫ 1

2

- 12

|f(x)− p(x)|2dx ≤
∫ 1

2

- 12

ε2dx = ε2
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which is to say
∥f − p∥2 ≤ ε2.

Taking the square root and applying the best approximation theorem, we see
that

∥f − SMf∥ ≤ ∥f − p∥ ≤ ε

whenever M > N . The claim then follows, as ε was arbitrary.

Fact 1. For f any Riemann integrable 1-periodic function, limN→∞ ∥f−SNf∥ =
0. This follows as we can approximate f arbitrarily well by continuous functions,
though we will not prove this.

Exercise 5. Assuming the above fact, show that

⟨f, g⟩ = lim
N→∞

⟨SNf, g⟩

for any Riemann integrable 1-periodic f and g. As a hint, consider writing the
inner product in terms of norms.

Hence deduce Parseval’s identity for Riemann integrable f :

∑
n∈Z

|cf (n)|2 = ∥f∥2 =

∫ 1
2

- 12

|f(x)|2dx.

We will prove Parseval’s identity for Riemann integrable f without assum-
ing this fact. Recall the definition of the circular convolution of two Riemann
inegrable 1 periodic functions f, g is defined by the integral

(f ∗ g)(x) :=
∫ 1

2

- 12

f(y)g(x− y)dy.

As we showed in exercise session 3, convolution is a commutative, associative
product on the space of Riemann integrable functions, and satisfies

c(f∗g)(n) = cf (n)cg(n).

Furthermore, (f ∗ g)(x) is a continuous 1-periodic function.

Theorem 3. For any Riemann integrable 1-periodic f : R → C

∑
n∈Z

|cf (n)|2 =

∫ 1
2

- 12

|f(x)|2dx

Proof. By Bessel’s inequality

∑
n∈Z

|cf (n)|2 = lim
N→∞

N∑
n=−N

|cf (n)|2 ≤
∫ 1

2

- 12

|f(x)|2dx.
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Define f̃(x) := f(−x) and note that

cf̃ (n) =

∫ 1
2

- 12

f(−x)e−2πinxdx

=

∫ 1
2

- 12

f(−x)e2πinxdx

=

∫ 1
2

- 12

f(x)e−2πinxdx = cf (n)

and hence
|cf (n)|2 = cf (n)cf (n) = cf (n)cf̃ (n) = c(f∗f̃)(n).

Thus, Bessel’s inequality implies the convergence of
∑

n∈Z |c(f∗f̃)(n)|. Thus the
Fourier series converges to (f ∗ f̃)(x). In particular∑

n∈Z
|cf (n)|2 =

∑
n∈Z

c(f∗f̃)(n)

= (f ∗ f̃)(0) =
∫ 1

2

- 12

f(y)f̃(−y)dy

=

∫ 1
2

- 12

f(y)f(y)dy = ∥f∥.

Remark 9. We only require that (f ∗ g)(x) be continuous at 0 for the above
argument to work.

Corollary 7. For integrable 1-periodic f, g

∑
n∈Z

cf (n)cg(n) =

∫ 1
2

- 12

f(x)g(x)dx.

Proof. We can either apply a similar convolution argument to Parseval’s iden-
tity, or apply Parseval’s identity and the equality

⟨f, g⟩ = 1

4

(
(∥f + g∥2 − ∥f − g∥2) + i(∥f + ig∥2 − ∥f − ig∥2)

)
.

Exercise 6. Prove Corollary 7 by direct computation using Fact 1.

We conclude with a final corollary of Bessel’s inequality.

Lemma 6 (Riemann-Lebesugue Lemma). If f is a Riemann integrable 1-
periodic function, then cf (n) → 0 as |n| → ∞.
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Proof. Bessel’s inequality implies that∑
n∈Z

|cf (n)|2 ≤ ∥f∥ <∞.

Doubly infinite series converge if and only if its terms tend to 0 as |n| → ∞.
Therefore |cf (n)|2 → 0 and so cf (n) → 0.
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Week 4

8 Poisson summation and the Fourier transform

Previously, we have shown that an enormous amount of information about pe-
riodic functions is encoded in their Fourier series. These same methods do not
apply immediately to non-periodic functions. However, we can still capture
some information about such functions via Fourier series computations.

Let f : R → C be a continuous function and that there exists C > 0 such
that f(x) is absolutely integrable∫ ∞

-∞
|f(x)|dx <∞,

for example if

|f(x)| ≤ C

1 + x2
for all x ∈ R.

We can construct a 1-periodic function associated to f as follows. Define

ϕf (x) :=
∑
n∈Z

f(x+ n).

As
ϕf (x+ 1) =

∑
n∈Z

f(x+ n+ 1) =
∑
n∈Z

f(x+ n) = ϕf (x),

the function ϕf is 1-periodic if it is well defined. As such, it suffices to show
that it is well defined on [− 1

2 ,
1
2 ]. But in the case where

|f(x)| ≤ C

1 + x2
for all x ∈ R.

we have that

|f(x+ n)| ≤ C

1 + n2

for all x ∈ [− 1
2 ,

1
2 ], and so by the Weierstrauss M-test, the series is uniformly

convergent. Thus, ϕf is well defined and continuous. More generally, we can
establish convergence by an integral comparison test.
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The Fourier coefficients of ϕf are given by

cϕf
(n) =

∫ 1
2

- 12

ϕf (x)e
−2πinxdx

=

∫ 1
2

- 12

∑
n∈Z

f(x+ n)e−2πinxdx

=
∑
n∈Z

∫ 1
2

- 12

f(x+ n)e−2πinxdx

=
∑
n∈Z

∫ n+ 1
2

n− 1
2

f(x)e−2πinxdx

=

∫ ∞

-∞
f(x)e−2πinxdx.

Note that, since this is an infinite integral, there are no periodicity con-
straints on e−2πinx, and so we can extend the definition of Fourier coefficients
of ϕf to a function on the real line.

Definition 7. Let f : R → C be a continuous absolutely integrable function.
The Fourier transform of f is defined as

f̂(ξ) :=

∫ ∞

-∞
f(x)e−2πiξxdx.

Our prior calculations then just say that f̂(n) = cϕf
(n). Now suppose f̂(ξ)

is also absolutely integrable. Suppose further that∑
n∈Z

|cϕf
(n)| <∞

and so the Fourier series converges to ϕf (x) uniformly: Thus we have mostly
established the following.

Theorem 4 (Poisson Summation Formula). Let f : R → C be a continuous,

absolutely integrable function with absolutely integrable Fourier transform f̂ .
Then, if

∑
n∈Z |f̂(n)| <∞,∑

n∈Z
f(x+ n) =

∑
n∈Z

f̂(n)e2πinx.

In particular, at x = 0 ∑
n∈Z

f(n) =
∑
m∈Z

f̂(m).

Proof. As noted above, f̂(m) = cϕf
(m) are the Fourier coefficients of the con-

tinuous 1-periodic function ϕf . If f̂ is absolutely integrable, then∑
n∈Z

|cϕf
(n)| =

∑
n∈Z

|f̂(n)| <∞
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and so
ϕf (x) =

∑
n∈Z

cϕf
(n)e2πinx =

∑
n∈Z

f̂(n)e2πinx

for all x. Thus ∑
n∈Z

f(x+ n) =
∑
n∈Z

f̂(n)e2πinx.

Thus, the Fourier transform of f at integer points captures some sort of
discrete information about f . One might hope that by considering f̂(ξ) for all
ξ ∈ R, one might capture more information about f at all real points. In order
to make this precise, we will need a bit more theory, so we will first give some
examples of Fourier transforms.

Example 11. Let f(x) = e−|x|. This is absolutely integrable, and so has a well
defined Fourier transform.

f̂(ξ) =

∫ ∞

-∞
e−|x|e−2πiξxdx

=

∫ ∞

0

e−(1+2πiξ)xdx+

∫ 0

−∞
e(1−2πiξ)xdx

=
1

1 + 2πiξ
+

1

1− 2πiξ
=

2

1 + 4π2ξ2
.

This is of moderate growth and therefore absolutely integrable. Thus we can
apply Poisson summation to get that

2
∑
n∈Z

1

1 + 4π2n2
=
∑
n∈Z

e−|n|.

Rearranging this we find that

2 + 4

∞∑
n=1

1

1 + 4π2n2
= 1 +

2e−1

1− e−1
= coth(

1

2
).

Not all Fourier transforms are this easy to compute though. A particularly
important, but tricky, example is the Fourier transform of the Gaussian.

Example 12. Let f(x) = e−πx2

. This is referred to as the normalised Gaussian
function. From the decay of the exponential, this is clearly absolutely integrable,
though there is a trick to computing the integral. We begin by considering the
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square of the integral.(∫ ∞

-∞
e−πx2

dx

)2

=

∫ ∞

-∞

∫ ∞

-∞
e−πx2−πy2

dxdy

=

∫
R2

e−π(x2+y2)dxdy

=

∫
R2

re−πr2drdθ

= 2π

∫ ∞

0

re−πr2dr = 1.

To compute the Fourier transform, we also need a trick. We write

f̂(ξ)

∫ ∞

-∞
e−πx2−2πiξxdx

=

∫ ∞

-∞
e−π(x+iξ)2−πξ2dx

− e−πξ2
∫ ∞

-∞
e−π(x+iξ)2dx.

Let ϕ(ξ) =
∫∞
-∞ e−π(x+iξ)2dx and note that

ϕ(0) =

∫ ∞

-∞
e−πx2

dx = 1,

ϕ′(ξ) =

∫ ∞

-∞
−2πi(x+ iξ)e−π(x+iξ)2dx.

We recognise the integrand in ϕ′(ξ) is also a derivative and therefore

ϕ′(ξ) =

∫ ∞

-∞
−2πi(x+ iξ)e−π(x+iξ)2dx

= i

∫ ∞

-∞

d

dx

(
e−pi(x+iξ)2

)
dx

= i
[
e−π(x+iξ)2

]∞
−∞

= 0

for all ξ ∈ R. Thus ϕ(ξ) = 1 for all ξ ∈ R and so

f̂(ξ) = e−πξ2 .

The normalised Gaussian is self dual!

Example 13. The Poisson summation formula for the normalised Gaussian is
extremely important in analytic number theory. We define the theta function

θ(t) :=
∑
n∈Z

e−πtn2

=
∑
n∈Z

gt(n)
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where gt(x) := e−πtx2

. From our above calculations and a change of variables,
we know that

ĝt(ξ) =
1√
t
e−π ξ2

t =
1√
t
g1/t(ξ)

and so the Poisson summation formula gives that

θ(t) =
∑
n∈Z

gt(n) =
1√
t

∑
n∈Z

g1/t(n) =
θ( 1t )√
t
.

This inversion property for the theta function is then used to prove the functional
equation for the Riemann zeta function

ζ(s) :=
∑
n≥1

1

ns

which allows us to extend the zeta function to almost the entire complex plane:

π− s
2Γ(

s

2
)ζ(s) = π

s−1
2 Γ(

1− s

2
)ζ(1− s).

In particular, this can be used to give meaning to the divergent sum

−1

12
= ζ(−1)“ =

∑
n ≥ 1n′′.

9 The Fourier inversion formula

In the case of Fourier series, if f was a continuous 1-periodic function whose
Fourier series was absolutely summable, we could recover f from (cf (n))n∈Z.
Thus we obtained a bijection between a set of “nice enough” functions and
“nice enough” sequences of complex numbers. We will show that a continu-
ous analogue of the same construction gives us that the Fourier transform is a
bijection for “nice enough” functions.

Definition 8. Suppose f̂ : R → C is continuous and absolutely integrable. The
inverse Fourier transform of f̂ is defined as

f∨(x) :=

∫ ∞

-∞
f̂(ξ)e2πiξxdξ =

ˆ̂
f(−x).

Theorem 5. Suppose f is a continuous, bounded, and absolutely integrable
function with continuous, absolutely integrable Fourier transform f̂ . Then f =
f∨, i.e.

f(x) =

∫ ∞

-∞
f̂(ξ)e2πiξxdξ

for all x.
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Remark 10. While we will only prove the above theorem in the above case, note
that this includes functions of moderate growth, i.e. those bounded by something
like C

1+x2 .

We will prove this using a continuous version of our Key Lemma about Dirac
families. Let us first define a continuous Dirac family.

Definition 9. A (continuous) Dirac family is a collection of non-negative even
functions on the real line

{ρT : R → R | T ∈ (0, L)},

where L is possibly infinite, satisfying∫ ∞

-∞
ρT (y)dy = 1

for all T and for every δ > 0

lim
T→L

∫
|y|≥δ

ρT (y)dy = 0.

Lemma 7 (Continuous Key Lemma). If f : R → C is continuous, bounded and
absolutely integrable, and {ρT }T∈(0,L) is a Dirac family, then

lim
T→L

∫ ∞

-∞
ρT (y)f(x− y)dy = f(x).

If, furthermore, f is uniformly continuous, then this limit converges uniformly.

Proof. We fix some x. Then, for all ε > 0 there exists δx > 0 such that

|f(x− y)− f(x)| < ε

for all |y| < δx. Then

|
∫ ∞

-∞
ρT (y)f(x− y)dy − f(x)| =|

∫ ∞

-∞
ρT (y) (f(x− y)− f(x)) dy|

≤
∫
|y|<δx

ρT (y)|f(x− y)− f(x)|dy

+

∫
|y|≥δx

ρT (y) (|f(x− y)|+ |f(y)|) dy

In the first integral
|f(x− y)− f(x)| < ε

and thus the first integral is bounded by ε, as the integral of ρT (y) across any
interval is at most 1. To bound the second interval, since f is bounded, we must
have that∫

|y|≥δx

ρT (y) (|f(x− y)|+ |f(y)|) dy ≤ 2∥f∥∞
∫
|y|≥δx

ρT (y)dy
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which tends to 0 as T → L. Thus, for T close enough to L, it is bounded by ε.
Thus

|
∫
|y|≥δx

ρT (y)f(x− y)dy − f(x)| ≤ 2ε

for T close enough to L and hence

lim
T→L

∫
|y|≥δx

ρT (y)f(x− y)dy = f(x).

Note that “T close enough to L” depends on x via δx. However if f is uniformly
continuous, then we may take δx = δ for some δ > 0 and all x, and thus

lim
T→L

sup
x∈R

|
∫
|y|≥δx

ρT (y)f(x− y)dy − f(x)| = 0

and we get that this limit converges uniformly.

We require one final lemma before proving the Inversion theorem. Specifi-
cally, we need a Dirac family.

Lemma 8. The family {ρT (x) = Te−πT 2x2}T∈(0,∞) is a Dirac family.

Proof. Clearly, ρT (x) is even an non-negative. By a change of variables∫ ∞

-∞
ρT (y)dy = T

∫ ∞

-∞
e−πT 2y2

dy =

∫ ∞

-∞
e−πu2

du = 1.

By the same change of variables∫
|y|≥δ

Te−πT 2y2

dy =

∫
|u|≥Tδ

e−πu2

du

which tends to 0 as T → ∞.

Proof of Theorem 5. The assumptions of our Continuous Key Lemma apply
here, so we must have that

f(x) = lim
T→∞

∫ ∞

-∞
Te−πT 2y2

f(x− y)dy

= lim
T→∞

∫ ∞

-∞
Te−πT 2(z−x)2f(z)dz.

Noting that

e−πT 2(z−x)2 =

∫ ∞

-∞
e−πq2e−2πiq(T (z−x))dq
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we see that

f(x) = lim
T→∞

∫ ∞

-∞

∫ ∞

-∞
Te−πq2e2πiqTx−2πiqTzf(z)dqdz

= lim
T→∞

∫ ∞

-∞
Te−πq2e2πiqTx

∫ ∞

-∞
f(z)e−2πiqTzdzdq

= lim
T→∞

∫ ∞

-∞
Te−πq2e2πqTxf̂(Tq)dq

= lim
T→∞

∫ ∞

-∞
e−π ξ2

T2 e2πiξxf̂(ξ)dξ

=

∫ ∞

-∞

(
lim

T→∞
e−π ξ2

T2

)
f̂(ξ)e2πiξxdξ

=

∫ ∞

-∞
f̂(ξ)e2πiξxdξ.

Example 14. We computed previously that for f(x) = e−|x|, f̂(ξ) = 2
1+4π2ξ2 .

This satisfies the conditions of our theorem and so we must have that

f(x) = e−|x| = 2

∫ ∞

-∞

e2πiξxdξ

1 + 4π2ξ2
= 4

∫ ∞

0

cos(2πξx)dξ

1 + 4π2ξ2
.

So, for example

4

∫ ∞

0

1

1 + 4π2ξ2
dξ = e0 = 1

and

4

∫ ∞

0

cos(πξ

1 + 4π2ξ2
dξ = e−

1
2 .

9.1 Convolution and Plancherel’s theorem

Much like for Fourier series, we have a notion of convolution that behaves well
with the Fourier transforms

Definition 10. Let f, g : R → C be (continuous) absolutely integrable functions.
Their convolution is defined by

(f ∗ g)(x) :=
∫ ∞

-∞
f(y)g(x− y)dy

Fact 2. Convolution has the following properties

• (f ∗ g) = (g ∗ f),

• (f ∗ (g ∗ h)) = ((f ∗ g) ∗ h),

• (f ∗ g) is continuous if at least one of f or g is continuous
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• If g is continuously differentiable, then so if (f ∗ g) and (f ∗ g)′ = (f ∗ g′).

In particular, the Fourier transform of a convolution is easy to compute in
terms of the Fourier transform of the functions involved.

Lemma 9. Let f, g : R → C be absolutely integrable functions. Then

(f̂ ∗ g)(ξ) = f̂(ξ)ĝ(ξ).

Proof.

f̂ ∗ g(ξ) =
∫ ∞

-∞
(f ∗ g)(x)e−2πiξxdx

=

∫ ∞

-∞

∫ ∞

-∞
f(y)g(x− y)e−2πiξxdydx

=

∫ ∞

-∞

∫ ∞

-∞
f(y)g(z)e−2πiξ(y+z)dydz

=

∫ ∞

-∞
f(y)e−2πiξydy

∫ ∞

-∞
g(z)e−2πiξzdz

= f̂(ξ)ĝ(ξ).

This lets us prove a continuous analogue of Parseval’s theorem.

Theorem 6 (Plancherel’s Theorem). Suppose f : R → C is bounded, continuous
and with ∫ ∞

-∞
|f(x)|2dx <∞.

Then ∫ ∞

-∞
|f(x)|2dx =

∫ ∞

-∞
|f̂(ξ)|2dξ.

Proof. Similarly to our proof of Parseval’s theorem, we will consider convolution
with the function f̃(x) := f(−x). For purposes of this proof, we will assume
f is absolutely integrable, so that the Fourier transform of both f and f̃ exist.
Then

ˆ̃
f(ξ) =

∫ ∞

-∞
f(−x)e−2πiξxdx

=

∫ ∞

-∞
f(−x)e2πiξxdx

=

∫ ∞

-∞
f(x)e−2πiξxdx

= f̂(ξ).
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Thus, by the above lemma

|f̂(ξ)|2 = f̂(ξ)
ˆ̃
f(ξ) = (̂f ∗ f̃)(ξ).

Computing the Fourier inverse, we get that∫ ∞

-∞
|f̂(ξ)|2e2πiξxdξ =

∫ ∞

-∞
(̂f ∗ f̃)(ξ)e2πiξxdξ = (f ∗ f̃)(x).

In particular, at x = 0, we have that∫ ∞

-∞
|f̂(ξ)|2dξ = (f ∗ f̃)(0)

the right hand side of which is

(f ∗ f̃)(0) =
∫ ∞

-∞
f(x)f̃(−x)dx

=

∫ ∞

-∞
|f(x)|2dx.

Remark 11. In the above proof, we assumed that f is absolutely integrable,
which we need to ensure the Fourier transform exists. However, it is not strictly
necessary: Carleson’s theorem tells us that if∫ ∞

-∞
|f(x)|2dx <∞

then the limit

lim
M→∞

∫ M

−M

f(x)e−2πiξxdx

exists for almost all ξ. One approach to proving this is to approximate f by
absolutely integral functions, but this involves non-trivial arguments.

“There are no easy proofs of Carleson’s theorem.”

Corollary 8. If f, g : R → C are bounded and both∫ ∞

-∞
|f(x)|2dx <∞ ,

∫ ∞

-∞
|g(x)|2dx <∞ ,

then ∫ ∞

-∞
f(x)g(x)dx =

∫ ∞

-∞
f̂(ξ)ĝ(ξ)dξ.

Proof. Note that

V := {f : R → C |
∫ ∞

-∞
|f(x)|2dx <∞}
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is a vector space with a Hermitian positive semidefinite form

⟨f, g⟩ :=
∫ ∞

-∞
f(x)g(x)dx

and associated seminorm

∥f∥2 =

∫ ∞

-∞
|f(x)|2dx.

Plancherel’s theorem says that ∥f∥2 = ∥f̂∥2. Using the fact that

⟨f, g⟩ = 1

4

((
∥f + g∥2 − ∥f − g∥2

)
+ i
(
∥f + ig∥2 − ∥f − ig∥2

))
,

we conclude that ⟨f, g⟩ = ⟨f̂ , ĝ⟩, which is precisely the statement of the result.

Remark 12. For many of the results discussed, we had to assume that both f
and f̂ be absolutely integrable. This is not guaranteed. For example

χ̂[0,1](ξ) =
e2πiξ − 1

2πiξ

is not absolutely integrable. The main class of functions for which we can guar-
antee that absolute integrability for are the Schwartz functions: f : R → C
infinitely differentiable such that

sup
x∈R

|xkf (l)(x)| <∞ for all k, l ≥ 0.

The Fourier transform defines an automorphism of the space of Schwartz func-
tions.

10 Polynomial approximation and theWeierstrauss
theorem

As another application of our Continuous Key Lemma, we will prove the Weier-
strauss approximation theorem.

Theorem 7. Let f be a continuous function on [a, b]. Then, for any ε > 0,
there exists a polynomial P such that

sup
x∈[a,b]

|f(x)− P (x)| < ε,

i.e. f can be uniformly approximated by polynomials.
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Proof. Note that by translation and scaling, it suffices to consider continuous
functions on [−1, 1]. We choose a continuous extension g of f to R such that
g(x) = 0 for all x ̸∈ [−2, 2]. Let C be a constant such that |g(x)| < C for all
x ∈ R. As g is continuous on a closed bounded interval, we know that it is
uniformly continuous and hence

lim
T→∞

sup
x∈R

∣∣∣∣g(x)− ∫ ∞

-∞
ρT (x− y)g(y)dy

∣∣∣∣ = 0

for any continuous Dirac family on (0,∞). Therefore, for all ε > 0, there exists
T > 0 such that

sup
x∈R

∣∣∣∣g(x)− ∫ ∞

-∞
ρT (x− y)g(y)dy

∣∣∣∣ < ε.

Taking ρT (x) = Te−πT 2x2

, we note that the Taylor series expansion

∞∑
n=0

T
(−πT 2x2)n

n!

converges uniformly on every closed and bounded interval. Thus, there exists
N > 0 such that

ρT (y)−
N∑

n=0

T
(−πT 2x2)n

n!
<

ε

4C

for all x ∈ [−4, 4]. Denote by

RN (x, T ) :=

N∑
n=0

T
(−πT 2x2)n

n!
.

We can therefore conclude that∣∣∣∣∫ ∞

-∞
ρT (x− y)g(y)dy −

∫ ∞

-∞
RN (x− y, T )g(y)dx

∣∣∣∣
=

∣∣∣∣∫ 2

−2

g(y) (ρT (x− y)−RN (x− y, T )) dy

∣∣∣∣
≤
∫ 2

−2

|g(y)| |rhoT (x− y)−RN (x− y, T )| dy

≤4C · ε

4C
= ε

for x ∈ [−2, 2]. Note here that we have used that g(x) = 0 outside of [−2, 2].
By the triangle inequality

|g(x)−
∫ ∞

-∞
g(y)RN (x− y, T )dy| ≤ 2ε
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for all x ∈ [−2, 2] and hence

|g(x)−
∫ ∞

-∞
g(y)RN (x− y, T )dy| ≤ 2ε

for all x ∈ [−1, 1]. Finally note that

RN (x− y, T ) =

2N∑
n=0

rk(y, T )x
k

for some rk(y, T ), and hence∫ ∞

-∞
g(y)RN (x− y, T )dy

is a polynomial in x.
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Week 5

11 The Fourier transform in higher dimension

We can extend much of the theory of Fourier transforms to functions

f : Rd → C

with little change from the 1-dimensional case as follows. Denote by ⟨v, w⟩ =
v1w1 + · · · vdwd the usual inner product on Rd.

Definition 11. Let f : Rd → C be a continuous function such that∫
Rd

|f(x)|dx <∞

where x = (x1, . . . , xd)
T ∈ Rd, and dx := dx1dx2 . . . dxn is the volume form.

The Fourier transform of f is the function f̂ : Rd → C

f̂(ξ) =

∫
Rd

f(x)e−2πi⟨ξ,x⟩dx.

Many properties of the 1-dimensional Fourier transform still hold, with
nearly identical proofs. For example, we have that

∂̂f

∂xk
(ξ) = 2πiξkf̂(ξ)

and
∂f̂

∂ξk
= ̂−2πixkf(ξ).

Our results relating the parity of f and f̂ have a multidimensional analogue in

f̂(R−)(ξ) = f̂(Rξ)

for any rotation matrix R.

Example 15. Suppose we have write f(x) = f1(x1)f2(x2) . . . fd(xd). Then

f̂(ξ) =

∫
Rd

f1(x1) . . . fd(xd)e
−2πi(ξ1x1+···ξdxd)dx1 . . . dxd

=

(∫ ∞

-∞
f1(x1)e

−2πiξ1x1dx1

)
· · ·
(∫ ∞

-∞
fd(xd)e

−2πiξdxddxd

)
= f̂1(ξ1)f̂2(ξ2) . . . f̂d(ξd).

In particular, if f(x) = e−π∥x∥2

= e−π(x2
1+···x2

d), then

f̂(ξ) = e−πξ21e−πξ22 . . . e−πξ2d = e−π∥ξ∥2

.
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Another example is if f(x) = e−(|x1|+...+|xd|), where the same argument
shows that

f̂(ξ) =

d∏
k=1

(
2

1 + 4π2ξ2k

)
.

Of course, not every function splits as a product of functions in each coordi-
nate. This can make computing the Fourier transform of even seemingly simple
functions quite challenging. For example, there is no obvious way to compute

the Fourier transform of f(x) = e−2π∥x∥ = e−2π
√

x2
1+···+x2

d . For this particular
example, and a number of similar ones, the subordination trick can come in
handy.

Lemma 10. For all y ∈ R

e−|y| =

∫ ∞

0

e−u

√
πu
e−

y2

4u dx.

Proof. Both sides of the above expression define functions for which the Fourier
inversion theorem applies, so it suffices to show that they have equal Fourier
transform. The Fourier transform of the left hand side is 2

1+4π2ξ2 , while the
Fourier transform of the right hand side is∫ ∞

-∞

∫ ∞

0

e−u

√
πu
e−

y2

4u e−2πiξydu dy =

∫ ∞

0

e−u

√
πu

(∫ ∞

-∞
e−

y2

4u e−2πiξydy

)
du

=

∫ ∞

0

2e−ue−4π2ξ2udu

= 2

∫ ∞

0

e−u(1+4π2ξ2)du

=
2

1 + 4π2ξ2
.

We can apply this to y = ∥x∥ as follows.

Example 16. Let f(x) = e−2π∥x∥. Taking the Fourier transform and applying
the subordination trick we find

f̂(ξ) =

∫
Rd

e−2π∥x∥e−2πi⟨ξ,x⟩dx

=

∫
Rd

∫ ∞

0

e−u

√
πu
e−

π2∥x∥2
u e−2πi⟨ξ,x⟩du dx

=

∫ ∞

0

e−u

√
πu

∫
Rd

e−
π2∥x∥2

u e−2πi⟨ξ,x⟩dx du

=

∫ ∞

0

π
d−1
2 u

d−1
2 e−u(1+∥ξ∥2)du
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which we can compute explicitly be repeated integration by parts to get that

f̂(ξ) = Cd

(
1 + ∥ξ∥2

)− d+1
2

for some explicit constant Cd.

11.1 Fourier inversion and Plancherel’s theorem

Knowing that the multidimensional Gaussian is its own Fourier transform, we
can show that ρT (y) = T de−πT 2∥y∥2

is a Dirac family. Using a multidimensional
version of our Key lemma, we can prove a Fourier inversion theorem almost
identically to the 1-dimensional case

Theorem 8. If f : Rd → C is bounded and continuous, and both∫
Rd

|f(x)|dx <∞,

∫
Rd

|f̂(ξ)|dξ <∞,

then

f(x) =

∫
Rd

f̂(ξ)e2πi⟨ξ,x⟩dξ.

We can define a higher dimensional version of convolution, again satisfying
most of the properties of the one dimensional case

Definition 12. Let f, g : Rd → C be absolutely integrable. Their convolution is
defined as

(f ∗ g)(x) :=
∫
Rd

f(y)g(x− y)dy.

As in the one dimensional case

(̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ)

and so we can reproduce the proof of Plancherel’s theorem.

Theorem 9. For f : Rd → C an absolutely integrable function with absolutely
integrable Fourier transform∫

Rd

|f(x)|2dx =

∫
Rd

|f̂(ξ)|2dξ.

11.2 Radial functions

Definition 13. A function f : Rd → C is called radial if either of the equivalent
conditions given hold

• There exists f0 : R → C such that f(x) = f0(∥x∥),

• For every rotation R f(Rx) = f(x).
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Note that, as f̂(Rξ) = f̂(R−)(ξ), the Fourier transform of a radial function
is again radial. Computing the Fourier transform of a radical function is often
much simpler than that of a general function, as we can sometimes reduce the
computation to a single integral using hyperspherical coordinates - in particular,
f̂(0) can always be reduced to a single integral multiplied by a constant related
to the volume of the unit d-ball. However, for non-zero ξ, computing the integral
over the angular coordinates can be tricky, involving special functions such as
spherical harmonics.

In the case where d = 2, we can be more precise about the form of the
Fourier transform. Suppose f : R2 → C is radial, with f(x) = f0(∥x∥). Then

f̂(ξ) =

∫
R2

f0(∥x∥)e−2πi⟨ξ,x⟩dx

=

∫ ∞

0

rf0(r)

∫ 2π

0

e−2πir(ξ1 cos(θ)+ξ2 sin(θ))dθ dr.

There exist θξ such that ξ1 cos(θ)+ξ2 sin(θ) = ∥ξ∥ sin(θ+θξ. Since the θ-integral
is invariant under translation, we therefore have

f̂(ξ) =

∫ ∞

0

rf0(r)

∫ 2π

0

e−2πir∥ξ∥ sin(θ)dθ dr.

Recall from exercise sheet we defined the Bessel functions Jn(t) as the Fourier
coefficients of eit sin(2πx). By a change of variables, our θ-integral can be seen to
be equal to 2πJ0(2πr∥xi∥), and so

f̂(ξ) = 2π

∫ ∞

0

rf0(r)J0(2πr∥ξ∥)dr.

Not only have we reduced our integral to a single integral in terms of mostly
well understood functions, unlike eix, the Bessel function has that J0(x) → 0 as

x ∈ ∞ reasonably quickly. As such, for radial functions, we can define f̂(ξ) for
f decays slower than we would need otherwise. The faster decay of J0(x) also

ensure that we can better approximate f̂(ξ) numerically.

12 Solving partial differential equations using
the Fourier transform

We have seen previously that Fourier series are a valuable tool for solving partial
differential equations on a bounded integral - assuming everything behaves suf-
ficiently well, we can reduce solving the partial differential equation to solving
a family of ordinary differential equations and express our solution in terms of
a sine or cosine series.

The Fourier transform similarly allows us to reduce partial differential equa-
tions, possibly in many variables, to solving a family of ordinary differential
equations, though here we in general obtain our solution as an integral.
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12.0.1 The heat equation in one dimension

Consider an infinite metal rod with and absolutely integrable initial heat distri-
bution f(x). Let

u : R× R≥0 → R

be a sufficiently differentiable function such that the heat distribution at time
t is given by u(x, t). The function u must satisfy (up to scaling one side by a
constant)

∂tu(x, t) = ∂2xu(x, t) for all x ∈ R, t > 0

u(x, 0) = f(x).

Let us take the Fourier transform of the above differential equation. For u
sufficiently well behaved, differentiation with respect to t commutes with taking
the Fourier transform in x. Thus

∂tû(ξ, t) = −4π2ξ2û(ξ, t)

for all ξ ∈ R and t > 0. For each fixed ξ ∈ R, this gives us an ordinary
differential equation in t with solution

û(ξ, t) = A(ξ)e−4π2ξ2t

for some A(ξ).
Since we want to find u such that u(x, 0) = f(x), we must have that

û(ξ, 0) = f̂(ξ)

and hence A(ξ) = f̂(ξ). Thus, a solution to our differential equation is given by
the inverse Fourier transform

u(x, t) =

∫ ∞

-∞
f̂(ξ)e−4π2ξ2te−2πiξxdξ.

Furthermore, this solution is unique: suppose u1 and u2 solve the heat equa-
tion with initial condition

u1(x, 0) = u2(x, 0) = f(x)

Then v := u1 − u2 is a solution to

∂tv(x, t) = ∂2xv(x, t) for all x ∈ R, t > 0

v(x, 0) = 0

and so, as above, the Fourier transform of v is of the form

v̂(ξ, t) = A(ξ)e−4π2ξ2t

and
A(ξ) = v̂(ξ, 0) = 0̂ = 0.
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Thus v̂ = 0 and so v = 0.
Note that we can view

f̂(ξ)e−4π2ξ2t

as the product of f̂(ξ) and ĝ(ξ) for g(x) = 1
2π

√
t
e−

x4

4t , and thus

û(ξ, t) = (̂f ∗ g)(ξ).

As such, we can give an alternative integral representation of u(x, t) via convo-
lution

u(x, t) =
1

2π
√
t

∫ ∞

-∞
f(y)e−

(x−y)2

4t dy.

12.0.2 The wave equation in one space dimension

Consider the wave equation in one space dimension - this can be thought of
as describing the vibration of an infinite string, or of a light wave. We will
assume the functions f, g : R → R describing the initial position and velocity
are absolutely integrable with absolutely integrable Fourier transform. Let the
amplitude of our wave at a point x ∈ R and time t ∈ R≥0 be described by a
function

u : R× R≥0 → R.

The function u must satisfy (up to scaling one side by a constant)

∂2t u(x, t) = ∂2xu(x, t) for all x ∈ R, t > 0,

u(x, 0) = f(x),

∂tu(x, 0) = g(x).

Taking the Fourier transform with respect to x, the wave equation becomes

∂2t û(ξ, t) = −4π2ξ2û(ξ, t).

We can solve this for each fixed ξ ∈ R to determine that

û(ξ, t) = A(ξ)e2πiξt +B(ξ)e−2πiξt

for some functions A,B. The Fourier transform of our initial conditions give
that

û(ξ, 0) = f̂(ξ)

∂tû(ξ, 0) = ĝ(ξ)

and hence

û(ξ, t) =
1

2

(
f̂(ξ) + Ĝ(ξ)

)
e2πiξt +

1

2

(
f̂(ξ)− Ĝ(ξ)

)
e−2πiξt

where G(x) is any absolutely integrable antiderivative of g.
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The inverse Fourier transform of this is particularly easy to compute and
thus we conclude that

u(x, t) =

∫ ∞

-∞

1

2

(
f̂(ξ) + Ĝ(ξ)

)
e2πiξt+2πiξx +

1

2

(
f̂(ξ)− Ĝ(ξ)

)
e−2πiξt+2πiξxdξ

=
1

2
(f(x+ t) +G(x+ t) + f(x− t)−G(x− t)) .

The d’Alembert method says that every solution to the wave equation should
have the form u(x, t) = P (x+ t) +Q(x− t), and we have given an explicit such
presentation!

What if we wanted to present this as a convolution integral instead? This is
not possible in terms of functions, as there is no function with Fourier transform
e2πiξt. However, for a more generalised notion of functions, it is possible.

Definition 14. A distribution is a linear function from a space of “nice” func-
tions to C that is continuous for an appropriate topology.

Example 17. If f : R → C is of moderate decay, then

h(x) 7→
∫ ∞

-∞
f(x)h(x)dx

is a distribution.

It is common to write distributions in this form: a distribution A is given as

A(h) =

∫ ∞

-∞
a(x)h(x)dx

as though there were a function a inducing the map A. We usually identify A
and a(x). It is often convenient to think of distributions as generalised func-
tions. Distributions have Fourier transforms in the space of distributions. The
integration by parts formula lets us define a notion of the derivative of a distri-
bution. These facts let us extend many results about Fourier transforms to a
larger space of functions by allowing the output to be a distribution.

The most important examples of distributions are the Dirac delta distribu-
tions δ(x− a) which are defined by∫ ∞

-∞
δ(x− a)f(x)dx := f(a)

The Fourier transform of δ(x− a) is∫ ∞

-∞
δ(x− a)e−2πiξxdx = e−2πiξa.

Using this, we can write each of the terms in û(ξ, t) as the Fourier transform
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of a function with the a Dirac delta and we find that

u(x, t) =
1

2
((f ∗ δ(z + t))(x) + (G ∗ δ(z + t))(x) + (f ∗ δ(z − t))(x)− (G ∗ δ(z − t))(x))

=
1

2

(∫ ∞

-∞
f(y)δ(x+ t− y) +G(y)δ(x+ t− y) + f(y)δ(x− t− y)−G(y)δ(x− t− y)dy

)
=

1

2
(f(x+ t) +G(x+ t) + f(x− t)−G(x− t)) .

as expected!

12.0.3 The damped wave equation in one space dimension

Consider the initial value problem

∂2t u+ ∂tu = ∂2xu

u(x, 0) = f(x)

∂tu(x, 0) = g(x)

for absolutely integrable f, g : R → C with absolutely integrable Fourier trans-
forms. Taking the Fourier transform, we see that we want to solve

∂2t û(ξ, t) + ∂tû(ξ, t) + 4π2ξ2û(ξ, t) = 0

û(ξ, 0) = f̂(ξ)

∂tû(ξ, 0) = ĝ(ξ).

For each ξ, the characteristic polynomial of the ordinary differential equation
we get is

z2 + z + 4π2ξ2 = 0.

Denote the roots of this polynomial by α(ξ), β(ξ). We have that α(ξ) = β(ξ)

if and only if 1 − 16π4ξ4 = 0, or ξ = ik

2π for k ∈ {0, 1, 2, 3}. Away from these
points, only two of which are real, the characteristic polynomial has distinct
roots and so the general solution is of the form

û(ξ) = A(ξ)eα(ξ)t +B(ξ)eβ(ξ)t.

Our initial conditions allow us to uniquely determine A(ξ) and B(ξ) in terms

of f̂(ξ) and ĝ(ξ). As the (inverse) Fourier transform only depends on almost-
everywhere behaviour of the function, we can take the inverse Fourier transform
of û without worrying about what happens at ξ = ±(2π)−1 to get that

u(x, t) =

∫ ∞

-∞
A(ξ)eα(ξ)t+2πiξx +B(ξ)eβ(ξ)t+2πiξxdξ

which is the best we can do unless α and β are particularly well behaved.
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12.0.4 The wave equation in two space dimensions

The wave equation in two dimensions can be thought of as describing the vibra-
tions of an infinite drum, or of a light wave, with an initial position and velocity.
We will assume that the functions f, g : R2 → R describing the initial position
and velocity are absolutely integrable. Let the amplitude of our wave at a point
x ∈ R2 and time t ∈ R≥0 be described by a function

u : R2 × R≥0 → R.

The function u must satisfy (up to scaling one side by a constant)

∂2t u(x, t) = ∂2x1
u(x, t) + ∂2x2

for all x ∈ R2, t > 0,

u(x, 0) = f(x),

∂tu(x, 0) = g(x).

We can take the Fourier transform with respect to the x variables to find that
the function û(ξ, t) satisfies

∂2t û(ξ, t) = −4π2ξ21 û(ξ, t)− 4π2ξ22 û(ξ, t) = −4π2∥ξ∥2û(ξ, t).

For each fixed ξ ∈ R2, this gives us an ordinary differential equation in t that
we can solve to find

û(ξ, t) = A(ξ) cos(2π∥ξ∥t) +B(ξ) sin(2π∥ξ∥t).

Taking the Fourier transform of our initial conditions, we must have that

û(ξ, 0) = f̂(ξ),

∂tû(ξ, 0) = ĝ(ξ).

Thus, we must have that

A(ξ) = f̂(ξ)

B(ξ) =
ĝ(ξ)

2π∥ξ∥

and so

û(ξ, t) = f̂(ξ) cos(2π∥ξ∥t) + ĝ(ξ)
sin(2π∥ξ∥)

2π∥ξ∥
.

Taking the inverse Fourier transform, we find that

u(x, t) =

∫
R2

(
f̂(ξ) cos(2π∥ξ∥t) + ĝ(ξ)

sin(2π∥ξ∥)
2π∥ξ∥

)
e2πi⟨ξ,x⟩dξ

is a solution to our differential equation. As in the case of the heat equation,
this is the unique solution.

Unlike in the case of the heat equation, we cannot easily rewrite this in
terms of a convolution of functions. Even determining an expression in terms
of distributions is challenging.
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Week 6

13 The Laplace transform

While the Fourier transform is an extremely powerful tool, working in the space
of functions for which it is defined can be quite restrictive, particularly if we
want the Fourier inversion theorem to hold. If, however, we extend the domain
of definition of the Fourier transform to the complex plane, then the integral

f̂
( s

2πi

)
=

∫ ∞

-∞
f(x)e−sxdx s ∈ R

makes sense for a much wider class of functions: functions that grow at most
exponentially as x → ∞ and that decay rapidly as x → ∞. This integral is
class the bilateral Laplace transform. If f(x) = 0 for all x < 0 (or all x < A
for some A ∈ R), then we don’t have to worry about the decay condition, just
about the growth condition. This will be the set up for the (one sided) Laplace
transform.

Definition 15. A function f : R → C is called right-sided if f(x) = 0 for all x <
0. A right sided function is called a-exponentially bounded if supx≥0 |f(x)|e−ax <
∞ for some a ∈ R. We say f is a-exponentially integrable if f is b-exponentially
bounded for all b > a.

Lemma 11. Let f : R → C be a piecewise continuous, right sided, and a-
exponentially integrable function. Then∫ ∞

0

f(x)e−sxdx

exists for all s ∈ C with ℜ(s) > a.

Proof. Since f is piecewise continuous, f(x)e−sx is piecewise continuous and it
suffices to show that ∫ ∞

0

|f(x)e−sx|dx <∞

for all b = ℜ(s) > a. As f is a-exponentially integrable, there exists C > 0 such
that |f(x)| < Ceax for all x ≥ 0. Hence∫ ∞

0

|f(x)e−sx|dx ≤ C

∫ ∞

0

e(a−b)xdx =
C

b− a

when b = ℜ(s) > a.

Definition 16. For f : R → C a piecewise continuous, right sided, and a-
exponentially integrable function, the (one sided) Laplace transform of f is Lf :
C>a → C,

Lf(s) :=
∫ ∞

0

f(x)e−sxdx.
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where
C>a = {s ∈ C | ℜ(s) > a}.

As noted earlier, the Laplace transform may be related to the Fourier trans-
form when a ∈ R. More broadly, for f a piecewise continuous, right sided and
a-exponentially integrable function, define fb : R → C for every real b > a by

fb(x) = f(x)e−bx

Then

f̂b(ξ) =

∫ ∞

-∞
f(x)e−bx−2πiξxdx =

∫ ∞

0

f(x)e−bx−2πiξxdx = Lf(b+ 2πiξ)

for all b > a and every ξ ∈ R. As such, we can transfer a number of results from
the Fourier transform to the setting of the Laplace transform.

Theorem 10. Let f : R → C be a piecewise continuous, right sided, a-
exponentially integrable function and suppose that Lf(b+2πiξ) is an absolutely
integrable function of ξ for some fixed b > a. Then

f(x) =

∫ ∞

-∞
Lf(b+ 2πiξ)e(b+2πiξ)xdξ

for all points of continuity x ∈ R.

Proof. By (a slightly more general version of) the Fourier inversion theorem,

if Lf(b + 2πiξ) = f̂b(ξ) is absolutely integrable as a function of ξ, then as all
points of continuity x ∈ R of fb(x),

f(x)e−bx = fb(x) =

∫ ∞

-∞
f̂b(ξ)e

2πiξxdξ =

∫ ∞

-∞
Lf(b+ 2πiξ)e2πiξxdξ

and so

f(x) =

∫ ∞

-∞
Lf(b+ 2πiξ)e(b+2πiξ)xdξ

at all points of continuity of fb(x). However, as e−bx is continuous and non-zero,
f(x) is continuous wherever fb(x) is continuous.

Remark 13. In order to simplify notation, the inverse Laplace transform given
in the above theorem is often written as

f(x) =

∫ b+2πi∞

b−2πi∞
Lf(s)esxds

Example 18. Let u : R → C denote the Heaviside step function

u(x) :=

{
1 x ≥ 0,

0 x < 0.
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This is right sided, piecewise continuous, and a-exponentially integrable for all
a ≥ 0. The Laplace transform is given by

Lu(s) =
∫ ∞

0

e−sxdx =
1

s

which is defined for all s with ℜ(s) > 0.

Note that if any f : R → C can be made right sided by multiplication by
u(x). As such, we may often drop the right sided requirement from discussions
of the Laplace transform.

Example 19. Let f(x) = eaxu(x). This is right sided, piecewise continuous
and a-exponentially integrable. The Laplace transform is given by

Lf(s) =
∫ ∞

0

e(a−s)xdx =
1

s− a

For right sided functions continuous everywhere except maybe at 0, the
Laplace inversion theorem tells us that Laplace transforms are invertible. As
such, we occasionally determine the inverse Laplace tranform of a rational func-
tion using the above example.

Example 20. Let f : R → C be a right sided, piecewise continuous, exponen-
tially integrable function with Laplace transform

Lf(s) = 1

s2 − 3s+ 2
.

By determining the partial fraction decomposition of Lf(s)

1

s2 − 3s+ 2
=

1

s− 2
− 1

s− 1

we can conclude that
f(x) =

(
e2x − ex

)
u(x)

almost everywhere.

As with the Fourier transform, the Laplace transform has a number of useful
properties to keep in mind.

Lemma 12. Let g : R → C be right sided, (twice) continuously differentiable
on [0,∞) and exponentially integrable. Then

• f(x) = xg(x) ⇒ Lf(s) = − (Lg)′ (s),

• f(x) = g′(x) ⇒ Lf(s) = sLg(s)− g(0),

• f(x) = g′′(x) ⇒ Lf(s) = s2Lg(s)− sg(0)− g′(0),

• f(x) = g(x− t) for t ≥ 0, ⇒ Lf(s) = e−stLg(s).
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Proof. If f(x) = xg(x),

Lf(s) =
∫ ∞

0

xg(x)e−sxdx = − d

ds

∫ ∞

0

g(x)e−sxdx = − (Lg)′ (s).

If f(x) = g′(x),

Lf(s) =
∫ ∞

0

g′(x)e−sxdx =
[
g(x)e−sx

]∞
0

+ s

∫ ∞

0

g(x)e−sxdx = −g(0) +Lg(s).

The third claim follows similarly by integrating by parts twice. The final claim
then follows easily from the definition

Lf(s) =
∫ ∞

0

g(x−t)e−sxdx =

∫ ∞

−t

g(x)e−sx−stdx = e−st

∫ ∞

0

g(x)e−sxdx = e−stLg(s).

Example 21. A useful example is if f(x) = xeax, then Lf(s) = 1
(s−a)2 . A

more complicated example would be something like

f(x) = xe2x cos(3x)u(x− 2).

Letting g(x) = e2x cos(3x)u(x− 2), we find that

Lf(s) = − (Lg)′ (s),

by the first point of the previous lemma. By the translation rule, we see that
mathcalLg(s) = e−2sLh(s) for h(x) = e4e2x cos(3x + 6)u(x) so that g(x) =
h(x− 2). Then

Lf(s) = e−2s
(
2Lh(s)− (Lh)′ (s)

)
.

Thus it suffices to compute Lh(s). We have that

h(x) =
e4+6i

2
e2x+3ixu(x) +

e4−6i

2
e2x−3ixu(x)

the Laplace transform of which is

Lh(s) = e4+6i

2

1

s− 2− 3i
+
e4−6i

2

1

s− 2 + 3i

and so

Lf(s) = e4+6i−2s

s− 2− 3i
+

e4−6i−s

s− 2 + 3i
+

1

2

(
e4+6i−2s

(s− 2− 3i)2
+

e4−6i−2s

(s− 2 + 3i)2

)
.

Definition 17. Let f, g : R → C be piecewise continuous, right sided, ex-
ponentially integrable functions. The convolution of f with g is the function
(f ∗ g) : R → C is defined by

(f ∗ g)(x) :=
∫ ∞

-∞
f(y)g(x− y)dy =

∫ x

0

f(y)g(x− y)dy.
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Lemma 13. Let f, g : R → C be piecewise continuous, right sided, exponentially
continuous functions. Then

L(f ∗ g)(s) = Lf(s)Lg(s)

for all ℜ(s) sufficiently large.

Proof. Computing the Laplace transform of the convolution, we see that

L(f ∗ g)(s) =
∫ ∞

0

(f ∗ g)(x)e−sxdx

=

∫ ∞

0

∫ x

0

f(y)g(x− y)e−sxdy dx

=

∫ ∞

0

∫ ∞

y

f(y)g(x− y)e−sxdx dy

=

∫ ∞

0

∫ ∞

0

f(y)g(z)e−sz−sydz dy = Lf(s)Lg(s).

13.1 Solving differential equations with convolution

As with the Fourier transform, we can transform differential equations into
algebraic equations using the Laplace transform, but with substantially fewer
restrictions on the possible space of solutions.

Example 22. Suppose y : [0,∞) → C is exponentially integrable and satisfies

y′′(x)− 3y′(x) + 2y(x) = 1

for all x > 0, with initial conditions y(0) = A, y′(0) = B. Now, as y(x) = 1
2 is

a particular solution to the differential equation, we can use the characteristic
equation to obtain a general solution. The initial conditions would then uniquely
specify the genuine solution. Instead, we can take the Laplace transform:

s2Ly(s)− sy(0)− y′(0)− 3sLy(s) + 3y(0) + 2Ly(s) = 1

s
,

which reduces to (
s2 − 3s+ 2

)
Ly(s) = 1

s
+As+ 3A−B

and so

Ly(s) = 1

s(s− 1)(s− 2)
+

As

(s− 1)(s− 2)
+

3A−B

(s− 1)(s− 2)
.

Computing the partial fraction decomposition of the right hand side, we see that

Ly(s) = 1

2

1

s
+ (B − 1− 4A)

1

s− 1

(
5A−B +

1

2

)
1

s− 2

61



and so we conclude

y(x) =
1

2
+ (B − 1− 4A) ex +

(
5A−B +

1

2

)
e2x

We can also solve differential equations involving convolutions.

Example 23. Suppose y : [0,∞) → C is exponentially integrable and satisfies

y′(x) + (g ∗ y)(x) = g(x)

for x > 0 and g(x) = exu(x). Suppose further that y(0) = 0. Then, taking the
Laplace transform we get

sLy(s) + Lg(s)Ly(s) = Lg(s).

As Lg(s) = 1
s−1 , we can solve this for Ly(s) to get

Ly(s) = 1

s− 1

1

s+ 1
s−1

=
1

s2 − s+ 1
=

1√
−3

(
1

s− 1
2 −

√
−3
2

− 1

s− 1
2 +

√
−3
2

)

and so

y(x) =
1√
−3

(
e(

1
2+

√
−3
2 )x − e(

1
2−

√
−3
2 )x

)
13.2 Linear system theory

Many physical processes, such as the result of inputting an electrical impulse
through a processor chip of choice, can be described using system theory. As
many of the basic results in signal theory rely on complex analytic methods, we
shall omit most of the proofs.

Definition 18. A signal is a function f : R → C, assumed to be piecewise
continuous.

A system S is a function from the space of signals to itself: it takes input
signal f and produces output signal Sf . A system is called

• Linear if S is a linear operator,

• Time invariant if STt = TtS for all t ∈ R, where (Ttf)(x) := f(x− t),

• Causal if Sf is right sided for every right sided signal f .

Fact 3. Linear, time invariant, causal signals can always be expressed as a con-
volution with a generalised function, called a distribution. We will only consider
the case where

Sf = h ∗ f

for right sided function h, called the impulse response. (In general, h is given
by the output Sδ of the system when given the Dirac delta function as input.)
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Definition 19. A linear, time invariant, casual system S is called exponentially
integrable if h is exponentially integrable. We call S stable if Sf is bounded for
every bounded f .

Fact 4. A system S is stable if and only if the impulse response is absolutely
integrable.

Fact 5. Suppose a system S is represented by a right sided, exponentially inte-
grable function h : R → C with Laplace transform

H(s) := Lh(s) = P (s)

Q(s)

for polynomials P,Q with no common factors and degP < degQ. Then S is
stable if and only if the roots of Q(s) have negative real part.

Example 24. Let S be the system given by Sf = h ∗ f for

h(x) =
1

2
cosh(x)u(x) ⇒ H(s) =

s

s2 − 1
.

As the denominator has a root at s = 1, the system S is not stable.
In contrast, the system with impulse response

h(x) = xe−xu(x) ⇒ H(s) =
1

s2 + 2s+ 1

is stable, as s2 + 2s+ 1 has only roots at s = −1.

Some systems can be stabilised by upgrading them to systems with feedback

Definition 20. A system S with constant feedback K is a system T such that

T (f) = S(f +KT (f))

for all signals f .

The constant K is often called the amplifier of the system T and S is the
base system. Given a pair (S,K) we can always find a system with constant
feedback associated to it: suppose S has impulse response h and denote by y
the desired output T (f). We will denote by F,H, Y the Laplace transforms of
f, h, y respectively. Then we want to determine y such that

y = h ∗ (f +Ky)

which, assuming we are in a situation where we can invert the Laplace transform,
is equivalent to finding Y such that

Y = H(F +KY ).

Hence

Ly = Y =
H

1−KH
F ⇔ y = L−1

(
H(s)

1−KH(s)

)
∗ f
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and the system T is given by convolution with the inverse Laplace transform of

HK :=
(

H(s)
1−KH(s)

)
.

In the case where H(s) = P (s)
Q(s) discussed above, HK(s) = P (s)

Q(s)−KP (s) . By

careful choice of K is is often possible to shift the zeros of HK(s) to the left
and obtain a stable system. Such a modification is could be used in, say for
example, a water heating system in order to maintain a stable temperature.

Example 25. Suppose we have a linear, time invariant, causal system with
impulse response

h(x) =

(
4

3
ex − 1

3
e−2x

)
⇒ H(s) =

s+ 3

s2 + s− 2
.

This is not stable - h(x) is not absolutely integrable, and H(s) has a root at
s = 1 > 0. Let us introduce feedback into the system with amplifier K. The
Laplace transform of the modified impulse response has denominator

Q(s)−KP (s) = s2 + (1−K)s− (2 + 3K)

which has roots

s± =
K − 1

2

√(
K − 1

2

)2

+ 3K + 2.

The square root is imaginary or zero for K ∈ [−9,−1], and K−1
2 < 0 if K < 1,

so any K ∈ [−9,−1] the modified denominator has roots with negative real part
and we get a stable modified system. If s± ∈ R, then s− < s+, and so it suffices
to check that s+ < 0. This is true for K < − 2

3 .

In all of the systems we have considered so far, we have been given the
impulse response, so we can usually check stability directly, without this fact.
However, in the wild, we often don’t have quite so much information about the
precise calculation of the output of a system. We might, however, know that the
output of a system satisfied some differential equation. By taking the Laplace
transform, we can often determine the Laplace transform H(s) of the impulse
response, and can therefore deduce facts about the stability of a system even
when we cannot compute the inverse Laplace transform explicitly.

Example 26. Suppose Sλ is a linear, time invariant, casual system such that,
for every signal f , the output y = Sλf satisfies

y′ + λ(a ∗ y) = f.

where a(x) = e−xu(x), λ > 0 and we assume y(0) = 0. Taking the Laplace
transform of this equation, we obtain that

sY (s)− y(0) + λA(s)Y (s) = F (s).
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As Sλ is obtained by convolution with some right sided, exponentially integrable
h, we have that Y = HF and so

sH(s)F (s) + λA(s)H(s)F (s) = F (s)

and so

H(s) =
1

s+ λA(s)
.

Note that A(s) = 1
s+1 , so we have

H(s) =
s+ 1

s2 + s+ λ
.

While we could compute the inverse Laplace transform of this via partial frac-
tions, we can also just note that the roots of s2 + s+ λ are

s± = −1

2
±
√

1

4
− λ

which have negative real part for all λ > 0. Thus Sλ is stable.

13.3 Solving PDEs via the Laplace transform

Very similarly to the case of the Fourier transform, we can use the Laplace
transform to solve certain partial differential equations, up to determining an
inverse Laplace transform.

13.3.1 The transport equation

Suppose we have a function r : R2
≥0 → R satisfying

∂tr(x, t) = −α∂xr(x, t) for all x, t > 0

r(0, t) = C, r(x, 0) = 0,

where α and C are positive real constants. If we assume that r(x, t) is expo-
nentially integrable as a function of t for every fixed x, we can take the Laplace
transform, and our problem becomes

sR(x, s)− r(x, 0) = −α∂xR(x, s)

R(0, s) =
C

s
, r(x, 0) = 0.

Treating the first equality as an ODE for each fixed x, we find that

R(x, s) = A(s)e−
s
αx

for some A(s) depending on s. The boundary condition gives us that

R(x, s) =
C

s
e−

sx
α .
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Computing the inverse Laplace transform directly, while not impossible, is chal-
lenging. In order to determine r, we instead recall that the Laplace transform
of the Heaviside step function u(x) is equal to 1

s . Using the properties of the
Laplace transform, or by direct computation, we find that

L(u(t− a))(s) =
e−as

s
.

Thus, we conclude that

r(x, t) = Cu(t− x

α
)

should solve our differential equation. That is to say

r(x, t) =

{
0 if t < x

α ,

C if t ≥ x
α .

13.3.2 The heat equation

Consider the heat equation on an infinite rod

∂tr(x, t) = ∂2xr(x, t)

with a boundary condition and an initial condition

∂xr(0, t) = f(t)

r(x, 0) = 0

Here, we only wish to find a solution. As such, we can freely impose addi-
tional restrictions to help us determine the solution. Let us suppose there exists
a solution such that r(x, t) is bounded for each fixed x. This implies both that
r(x, t) is exponentially integrable as a function of t for every fixed x, and that

lim
s→∞

|R(x, s)| ≤ lim
s→∞

∫ ∞

0

|r(x, t)|e−stdt ≤ lim
s→∞

Cx

∫ ∞

0

e−stdt = lim
s→∞

Cx

s
= 0.

As such, the Laplace transform must decay for each fixed x. Taking the Laplace
transform of the heat equation, we find that R(x, s) must satisfy

sR(x, s)− r(x, 0) = ∂2xR(x, s)

and hence
R(x, s) = A(s)e

√
sx +B(s)e−

√
sx.

Since we must have lims→∞R(x, s) = 0, we need A(s) to decay faster that
e−

√
sx for every x ∈ R. As such, we might as well take A(s) = 0, and so we can

take

B(s) = −F (s)√
s
.
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Thus

R(x, s) = −F (s)√
s
e−

√
sx.

Embracing our inner engineers and searching through a table of transforms, we

find that −e−
√

sx
√
s

is the Laplace transform of

1√
πt
e−

x2

4t u(t)

and thus we can use the convolution property of the Laplace transform to con-
clude that

r(x, t) =

∫ ∞

-∞
f(y)

1√
π(t− y)

e−
x2

4(t−y)
u(t−y)dy.

Since f is assumed to be right sided, this reduces to the finite integral

r(x, t) =

∫ t

0

f(y)
1√

π(t− y)
e−

x2

4(t−y)
u(t−y)dy.
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Week 7

14 The Radon transform and tomography

Suppose we have a two dimensional body O of “density” ρ (this will be called
the attenuation or absorption constant). If we fire an x-ray from the origin
through O with intensity I0, and then measure the intensity I on the far side,
physics tells us these intensities are related by

I = I0e
−dρ

where d is the distance the ray travels through O.
If we have 2 regions of different attenuation constants ρ1, ρ2, we can iterate

this rule to determine that the measured intensity will be

I = I0e
−d1ρ1−d2ρ2

where dk is the distance traveled through the region with attenuation constant
ρk, For general object with attenuation ρ : O → R, we can imagine chopping O
up into infinitesimally thin layers to conclude

I = I0e
∫
L
ρdx

where L is the line along which our x-ray travels, and we extend ρ to a function
on R2 be defining ρ(x) = 0 for all x ̸∈ O.

In order to “see” inside O, we can measure I along various lines L to deter-
mine a function

L 7→
∫
:

ρ(x)dx

called the Radon transform of ρ. If we can determine ρ from this, we can see
the guts of O - this is possible, but it is easier to work in three dimensions.

14.1 The three dimensional Radon transform

Now consider a function ρ : R3 → C a function (with compact support). Instead
of measuring ρ by firing a single x-ray through O, we will look at the what
happens across a plane.

A plane is R3 is (not uniquely) determined by a unit vector γ ∈ R3 and a
real number t

Hγ,t := {x ∈ R3 | ⟨x, γ⟩ = t}.
We define the Radon transform of ρ as the function

(Rρ)(γ, t) :=

∫
Hγ,t

ρ(x)dx.

By extending γ to an orthonormal basis (γ, e1, e2), we can write the Radon
transform as

(Rρ)(γ, t) =

∫
R2

ρ(tγ + x1e1 + x2e2)dx1dx2.

Given this, can we recover ρ?
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14.2 The Radon transform of radial functions

Consider first the case where

ρ(x) = ψ(∥x∥2)

for some ψ : R≥0 → C. Then, as (γ, e1, e2) are orthonormal

∥tγ + x1e2 + x2e2∥2t2 + x21 + x22

and so, switiching to polar coordinates

(Rρ)(γ, t) =

∫
R2

ψ(t2 + x21 + x22)dx1dx2

= 2π

∫ ∞

0

ψ(t2 + r2)rdr

= π

∫ ∞

0

ψ(t2 + u)du.

Note that this depends only on t2, so we can find ϕ : R → C such that

ϕ(t2) = (Rρ)(γ, t)

and so

ϕ(t) = π

∫ ∞

0

ψ(t+ u)du

π

∫ ∞

t

ψ(v)dv..

Taking the derivative of this, we get that

ρ(x) = ψ(∥x∥2) = − 1

π
ϕ′(∥x∥2).

But what about non-radial functions?

14.3 The Fourier slice theorem

Note that the Fourier transform of ρ is given by

ρ̂(ηγ) =

∫
R3

ρ(x)e−2πiη⟨x,γ⟩dx

=

∫ ∞

-∞

(∫
Hγ,t

ρ(x)dx1dx2

)
e−2πiηtdt

= (̂Rρ)(γ, η)

where we take the Fourier transform with respect to t. If we have two bodies

with attenuations ρ1, ρ2, such that Rρ1 = Rρ2, this implies (̂Rρ1) = (̂Rρ2) and
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so ρ̂1 = ρ̂2. Thus, if ρ1, ρ2 satisfy the conditions for Fourier inversion, this
implies ρ1 = ρ2! Thus, ρ is uniquely determined by its Radon transform.

In order to truly recover ρ, we need to introduce the dual Radon transform.
Given

F : S2 × R = {x ∈ R3 | ∥x∥ = 1} × R → C
we define

(R∗F )(x) :=

∫
S2

F (γ, ⟨x, γ⟩)dσ(γ)

or in spherical coordinates

(R∗F )(x) =

∫ π

0

∫ 2π

0

F ((cos θ sinϕ, sin θ sinϕ, cosϕ), x1 cos θ sinϕ+ x2 sin θ sinϕ+ x3 cosϕ) sinϕdθdϕ.

We also introduce the Laplace operator

∆f :=
∂2f

∂x21
+
∂2f

∂x22
+
∂2f

∂x23
.

In 1917, Radon showed the following result.

Theorem 11. For ρ : R3 → C with piecewise continuous with absolutely inte-
grable Fourier transform

ρ(x) = − 1

8π2
(∆R∗Rρ)(x)

Proof. We know that

(̂Rρ)(γ, η) = ρ̂(ηγ).

Taking the (one dimensional) inverse Fourier transform with respect to η, we
find

(Rρ)(γ, t) =

∫ ∞

-∞
ˆrho(ηγ)e2πiηtdη.

The dual Radon transform of this is

(R∗Rρ)(x) =

∫ ∞

-∞

∫
S2

ρ̂(ηγ)e2πiη⟨x,γ⟩dσ(γ)dη.

Note that

∆e2πiη⟨x,γ⟩ = −4π2η2(γ21 + γ22 + γ23)e
2πiη⟨x,γ⟩ = −4π2η2e2πiη⟨x,γ⟩

and hence

(∆R∗Rρ)(x) = −4π2

∫ ∞

-∞

∫
S2

η2ρ̂(ηγ)e2πiη⟨x,γ⟩dσ(γ)dη

which is the spherical coordinate form of the integral

(∆R∗Rρ)(x) = −8π2

∫
R3

ρ̂(ξ)e2πi⟨x,ξ⟩dξ = −8π2ρ(x)!
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Example 27. This is a tough example. but let us consider the Radon transform
of ρ(x) = χB(x) of the indicator function of the unit ball. Then

(Rρ)(γ, t) =

∫
R2

χB(tγ + x1e1 + x2e2)dx1dx2

= π(1− t2)χ[−1,1](t)

is given by the area of the intersection of Hγ,t with the unit ball. We will now
show that we recover the constant function 1 as the inverse Radon transform for
∥x∥ < 1.

(R∗Rρ)(x) = π

∫
S2

(
1− ⟨x, γ⟩2

)
χ[−1,1](⟨x, γ⟩)dσ(γ).

One can check that this is rotationally invariant, so we can freely choose our
spherical coordinate system so that ⟨x, γ⟩ = ∥x∥ cosϕ. Thus, for ∥x∥ ≤ 1

(R∗Rρ)(x) = π

∫ π

0

∫ 2π

0

(
1− ∥x∥2 cos2 ϕ

)
sinϕdθdϕ

= 2π2

∫ π

0

(
1− ∥x∥2 cos2 ϕ

)
sinϕdϕ

= 2π2(2− 2

3
∥x∥2).

Taking the Laplacian we find

− 1

8π2
(∆R∗Rρ)(x) =

1

6
(2 + 2 + 2) = 1.

For ∥x∥ > 1, we need to compute

(R∗Rρ)(x) =2π2

∫ π

0

(
1− ∥x∥2 cos2 ϕ

)
χ[−1,1](∥x∥ cosϕ) sinϕdϕ

=2π2

∫ π
2

0

(
1− ∥x∥2 cos2 ϕ

)
χ[−1,1](∥x∥ cosϕ) sinϕdϕ

+ 2π2

∫ π
2

0

(
1− ∥x∥2 sin2 ϕ

)
χ[−1,1](∥x∥ sinϕ) cosϕdϕ

=4π2

∫ 1

0

(1− ∥x∥2u2)χ[−1,1](∥x∥u)du

=4π2

∫ ∥x∥−1

0

(1− ∥x∥2u2)du =
8π2

3
∥x∥−1.

This is annihilated by the Laplacian. Thus, we recover the indicator function
for all non-unit vectors x.
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15 The Mellin transform

Given a sufficiently “nice” function f : R → C, we can define the Mellin trans-
form of f as

Mf(s) =

∫ ∞

0

f(x)xs−1dx.

When this converges, it usually only converges in a strip a < Re(s) < b for some
real a, b. Nevertheless, we still can obtain a lot of information from the Mellin
transform, and it is often used in order to extend the domain of definition of
number theoretic functions.

By making the substitution x = e−u, we find that

Mf(s) = −
∫ ∞

-∞
f(e−u)e−sudu = F̂ (

s

2πi
)

where F (x) = −f(e−x). As such, we can deduce a number of Fourier theoretic
results for the Mellin transform. In particular, we obtain a formula for the
inverse Mellin transform: for any a < c < b

f(x) =
1

2πi

∫ c+i∞

c−i∞
x−sMf(s)ds.

Example 28. Lets consider Γ(s) :=
∫∞
0
e−tts−1ds. This converges for Re(s) >

1, and defines a special function we cannot compute in general. However, by
integration by parts, we can show that

Γ(n+ 1) = n!

for all integers n ≥ 1. The recursive property of the factorial holds more gener-
ally

Γ(s+ 1) =

∫ ∞

0

e−ttsdt = s

∫ ∞

0

e−tts−1dt = sΓ(s).

We can use this to extend the definition of Γ(s) to a function on C\{0,−1,−2, . . .}

Γ(s) :=

{∫∞
0
e−tts−1dt, Re(s) > 1

1
sΓ(s), Re(s),≥ 1.

This is a fairly common approach to extend sufficiently nice functions on
a strip to almost the entire complex plane – we find some sort of functional
equation that holds on the domain of definition, and use this equation to define
the values everywhere.

Example 29. Let fz(t) = e−zt. The Mellin transform of fz(t) is

Mfz(s) =

∫ ∞

0

e−ztts−1dt =

∫ ∞

0

z−se−uus−1du =
Γ(s)

zs
.

72



Recall that we defined the Riemann zeta function for Re(s) > 1 by

ζ(s) =
∑
n≥1

1

ns
.

Assuming we can swap the order of summation and integration, this implies that

Γ(s)ζ(s) =
∑
n≥1

∫ ∞

0

e−ntts−1dt

=

∫ ∞

0

∑
n≥1

e−ntts−1dt

=

∫ ∞

0

1

e1 − 1
ts−1dt

This integral doesn’t converge everywhere, but it does converge close to every-
where, allowing us to define ζ(s) close to everywhere in C \ {1, 0,−1,−2, . . .}.
This isn’t the best integral representation though - we can find an integral rep-
resentation that lets us define ζ(s) for all s ̸= 0, 1!

Example 30. Recall that we used Poisson summation to show the following
functional equation ∑

n∈Z
eπtn

2

=: θ(t) = t−
1
2 θ(

1

t
), t > 0.

Let ψ(t) =
∑

n≥1 e
−πtn2

, so that θ(t) = 2ψ(t)+1. The functional equation then
implies that

ψ(t) = t−
1
2ψ(

1

t
) +

1

2
t−

1
2 − 1

2
.

Consider the Mellin transform of ψ(t):

Mψ(
s

2
) =

∫ ∞

0

∑
n≥1

e−πtn2

t
s
2−1dt

=
∑
n≥1

∫ ∞

0

e−πn2tt
s
2−1dt

=
∑
n≥1

1

π
s
2ns

Γ(
s

2
) = π− s

2Γ(
s

2
ζ(s)

for Re(s) > 1. But∫ ∞

0

ψ(t)t
s
2−1dt =

∫ 1

0

ψ(t)t
s
2−1dt+

∫
ψ(t)t

s
2−1dt.
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The second of these integrals converges for all s ∈ C. Using the functional
equation, the first of these integrals becomes∫ 1

0

ψ(t)t
s
2−1dt =

∫ 1

0

t−
1
2ψ(

1

t
)t

s
2−1 +

1

2
t
s
2−

3
2 − 1

2
t
s
2−1dt

=

∫ 1

0

ψ(
1

t
)t

s
2−

3
2 dt+

1

s− 1
− 1

s

=
1

s− 1
− 1

s
+

∫ ∞

1

t−
1
2−

s
2ψ(t)dt.

Thus

π− s
2Γ(

s

2
)ζ(s) =

1

s− 1
− 1

s
+

∫ ∞

1

(
t−

1
2−

s
2 + t

s
2−1
)
ψ(t)dt

which converges everywhere except for s = 0 and s = 1.
As Γ(s) ̸= 0 for all s, this implies that we can use this formula to define ζ(s)

for all s ̸= 0, 1. As Γ(s) is infinite for s = 0,−1,−2, . . ., we can in fact extend
ζ(s) to all s ̸= 1, and can conclude that ζ(−2n) = 0 for all n > 0.

Furthermore, the right hand side is invariant under s 7→ 1 − s, so we can
deduce the functional equation for the Riemann zeta function

π− s
2Γ(

s

2
)ζ(s) = π

s−1
2 Γ(

1− s

2
)ζ(1− s).

15.1 Writing sums as integrals

The Mellin transform can be quite useful for summing certain series, via the
inverse Mellin transform, both finite and infinite series. Let us first consider the
infinite case.

Suppose S =
∑

n≥1 f(n) for a “nice” function f : R → C, with Mellin
transform F (s), so that

f(x) =
1

2πi

∫ c+i∞

c-i∞
F (s)x−sds

Assuming F is also well behaved, we can sum this and swap the order of sum-
mation and integration to get that

S =
1

2πi

∫ c+i∞

c-i∞

∑
n≥1

F (s)n−sds =
1

2πi

∫ c+i∞

c-i∞
F (s)ζ(s)

which we can often evaluate using contour integration methods from complex
analysis.

Example 31. Consider f(x) = cos(xy)
x2 , with Mellin transform F (s) = −y2−sΓ(s−

2) cos(πs2 ) for 2 < Re(s) < 3. Then for 2 < c < 3, we have that

S(y) = − 1

2πi

∫ c+i∞

c-i∞
y2−sΓ(s−2) cos(

πs

2
)ζ(s)ds = − 1

2πi

∫ c+i∞

c-i∞
y2−s2s−1πs ζ(1− s)

(s− 1)(s− 2)
ds
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where we have used a functional equation for both Γ and ζ. Viewing this as a
contour integral, we conclude

S(y) =
y2

4
− πy

2
+
π2

6
.

For finite sums, we have Perron’s formula.

Theorem 12. Let g(s) =
∑

n≥1
a(n)
ns be a function convergent in some strip

a < Re(s) < b. Then, for all x ∈ R \ Z, we have that

A(x) :=
∑
n≤x

a(n) =
1

2πi

∫ c+i∞

c-i∞

g(s)xs

s
ds.

Proof. Consider the Mellin transform of A(x):

MA(−s) =
∫ ∞

0

A(x)x−s−1dx =

∫ ∞

1

A(x)x−s−1dx

=
∑
n≥1

∫ n+1

n

A(n+
1

2
)x−s−1dx =

∑
n≥1

A(n+
1

2
)

∫ n+1

n

x−s−1dx

=
∑
n≥1

sA(n+
1

2
)
(
n−s − (n+ 1)−s

)
= s

∑
n≥1

(
A(n+

1

2
)−A(n− 1

2
)

)
n−s = s

∑
n≥1

a(n)

ns
= sg(s).

Taking the inverse Mellin transform, we get that

A(x) =
1

2πi

∫ −c+i∞

−c−i∞

g(−s)xs

s
ds =

1

2πi

∫ c+i∞

c-i∞

g(s)xs

s
ds.

Example 32. For a(n) = 1, g(s) = ζ(s) and A(x) = ⌊x⌋. Thus

ζ(s) = s

∫ ∞

0

⌊x⌋
xs+1

dx

and

⌊x⌋ = 1

2πi

∫ c+i∞

c-i∞

ζ(s)xs

s
ds

for some c > 1 and all x ̸= Z.
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