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Exercise 1 Plane isometries

Let’s ponder some examples of isometries of R? with the standard Euclidean
distance.

1. Does there exist an isometry mapping

V31 1 1
(1,0) — (7,§> , and (0,1) — (E,E)

If so, find an example. You can describe it using words if easier.

2. Does there exist an isometry mapping

1 3 1 3
,0)—(1+—,=], and (0,1)—(1——, =
1.0~ (1+75:3) )
If so, find an example. You can describe it using words if easier.

3. Let ¢ be an affine line in R?. Define a reflection map p, : R? — R?
as follows. If x is a point on ¢, then p,(x) = x. Otherwise, there
is a unique line ¢, through x perpendicular to ¢, which intersects ¢
at p,. We define py(z) to be the unique other point on ¢, such that
d(z,p.) = d(pe(x),ps). Is py is an isometry?

Hint: Go old-school on this. Be Greek about it


https://www.maths.tcd.ie/~keilthya/teaching/2026/ENEG/eneg.html

4. Suppose we have two lines ¢; and ¢5. By considering how it acts on the
vertices of a triangle, describe what kind of isometry pg, o pg, could be.

Hint: By rotating and translating the plane, you can assume {1 is the x-
azis. By translating, you can assume the lines intersect in the origin (if
they intersect at all). What might good choices for the triangle vertices
be?

Solution 1

1. No! The distance between the two points and their images changes
from v/2 to something smaller!

2. Yes! The distance between the points is preserved, so we can find
such an isometry. For example, we can take the composition of the
anticlockwise rotation around the origin by 7, which takes the line
segment (1,0) — (0, 1) to one parallel to the desired image line segment,
with the endpoints in the correct order, with the translation taking the
leftmost endpoint of the rotated line segment to the leftmost endpoint
of the image line segment. Explicitly, this is the map

T 4 -1 T 1
G- 56+ ()
Yy 2 2 Yy B
3. We consider 3 cases, and suppress the subscript ¢. First suppose both
x and y are on £. Then

d(p(z), p(y)) = d(z,y)

by definition. If x is on ¢, but y is not, then we consider the triangles
x —p, —y and x — p, — p(y). By construction

)

™

d(z,py) = d(z,p,), Lr—py,—y = 5= Lr—py—p(y), d(py,y) = d(py, p(y))

so these triangles are equal/congruent. In particular d(z,y) = d(z, p(y)).
Finally, if neither x nor y are on ¢, then we consider first the triangles
Dz — Py —y and p, — p, — p(y). As before, these are congruent, and so

d(pe,y) = d(ps, p(y)), and Ly — py — py = Zp(y) — Pz — Dy As

T
ép(w)—px—py=§=éx—pm—py



we therefore have Zp, — p, — p(y) = Zx — p, — y. Finally d(z,p,) =
d(p(x), ps), so the triangles = — p, —y and the triangles p(z) — p, — p(y)
are equal/congruent. Hence d(z,y) = d(p(z), p(v)).

. We first consider the case of parallel lines. We can assume, by rotation
and translation, that ¢, is the z-axis, and that ¢y is given by y = ¢
for some c¢. The composition is determined by the image of any three
non-collinear points, so lets take (0,0), (1,0), and (a,b) for some a,b
with b # 0. Reflection in ¢; fixes (0,0) and (1,0), and sends (a,b) to
(a,—b). It is not hard to see that reflection in y = ¢ will send a point
(20, Y0) to (zo,yo — 2(y — 0 — ¢)) = (x0,2¢ — o), so the composition of
our reflections sends

(0,0) = (0,2¢), (1,0) — (1,2¢), (a,b)— (a,b+ 2c)

i.e. translation by (0,2¢). Thus composition of reflections in parallel
lines gives a translation.

If the lines are not parallel, we can assume they intersect in the origin,
that ¢; is the z-axis and /5 is given by y = mz. We consider the points
(0,0), (1,0), and (1, —m), and we consider them as vertices of a triangle
T We assume (1,0) is anti-clockwise of the edge E : (0,0) — (1, —m).
The first reflection gives

(0,0) — (0,0), (1,0) —~ (1,0), (1,—m)+— (1,m)

which gives a triangle 7" congruent to 7', but (1,0) is clockwise of the
edge F'.

As (0,0), and (1,m) are on {5, they are invariant under the reflection,
so we just need to compute the image of (1,0). As reflection is an
isometry, the image of (1,0) is the intersection of the circle of radius
1 centred at (0,0) and the circle of radius m centred at (1,m) on the
other side of /5 to (1,0). As E’ lies along {5, E” = E’. We again obtain
a triangle 7" congruent to T', with the image of (1,0) anti-clockwise of
the edge E"

If we considered a rotation of the plane so that the line y = —mux is
sent to the line y = mx, we would have a mapping such that

(0,0) — (0,0), (1,—m)— (1,m)



so ' maps to E”. The triangle T" is mapped to a congruent triangle Ty,
such that the vertex not on E” is anticlockwise of E”. This is precisely
the image of (1,0), and so the composition of the two reflections is a
rotation around their intersection point.

We can make this more formal, by noting that the first reflection is
given by the matrix
1 0
0 —1
while the second is given by
<cos(20) sin(20) )

sin(26) — cos(26)

where tan(f) = m. The product of these is precisely a rotation by 26.

Exercise 2 Rotations in space

Up to translation, a rotation in 3 dimensional space is given by a map of
the form z — Mz, where M is a (3 x 3)-matrix such that M7 M = I and
det M = 1.

1. Show that 1 is an eigenvalue of M and hence that M fixes a line through
the origin. Hint: consider (Mv, Mv) for some eigenvector v.

2. Hence conclude that there exist a matrix P such that
a b 0
P'MP=1|c d 0
0 01
where

and ad — be = 1.

Solution 2

1. Consider an eigenvector v of M, with eigenvalue \. We have that

(Mv, Mv) = (M*Muv,v) = (v,v)

4



and

(Muv, Mv) = (\v, \v)
= [A*{v, v).

As v # 0, we have |A\|> = 1 for all eigenvalues. The eigenvalues of M
satisfy a cubic polynomial

det(M —xI) =0

which either has 3 real roots, or 1 real root and two complex conjugate
roots. Call the roots Ay, Ao, A3. As

)\1)\2)\3 = det(M) = 1, and |>\1|2 =1

we have (up to relabelling) one of

A=Ay =As =1,
At=1, A= A3 =—1,
)\17 )\2 :)\_3

In all cases, we have 1 as an eigenvalue.

Let w be the corresponding eigenvector. Then the like {tw | ¢t € R} is
fixed by M.

. Let w be an eigenvector with eigenvalue 1, of norm 1. We can find vec-
tors uw and v such that {u,v,w} is an orthonormal basis (via Graham-
Schmidt for example), and the matrix P = [uv w] acts as an orthonor-
mal change of basis matrix, so that P~!M P is the matrix whose first
column is determined by Mwu, whose second column is determined by
Mv and whose third column is determined by Mw. We have

Mu = au+ cv+ew, Mv=0bu+dv+ fw, Mw=w

for some a,b,c,d, e, f, so

P'MP =

o o
~ T
= o O



By orthonormality, we have that
e = (w, Mu) = (Mw, Mu) = (M* Mw,u) = {(w,u) =0

and similarly f = 0, as needed. The conditions on a, b, ¢, d follow from
properties of the determinant and orthonormality

P'=P' = (P'MP)(P*MP)" =1, det(P*MP)=det(M) =1



