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Exercise 1 Plane isometries

Let’s ponder some examples of isometries of R2 with the standard Euclidean
distance.

1. Does there exist an isometry mapping

(1, 0) 7→

(√
3

2
,
1

2

)
, and (0, 1) 7→

(
1√
2
,
1√
2

)
If so, find an example. You can describe it using words if easier.

2. Does there exist an isometry mapping

(1, 0) 7→
(
1 +

1√
2
,
3

2

)
, and (0, 1) 7→

(
1− 1√

2
,
3

2

)
If so, find an example. You can describe it using words if easier.

3. Let ℓ be an affine line in R2. Define a reflection map ρℓ : R2 → R2

as follows. If x is a point on ℓ, then ρℓ(x) = x. Otherwise, there
is a unique line ℓx through x perpendicular to ℓ, which intersects ℓ
at px. We define ρℓ(x) to be the unique other point on ℓx such that
d(x, px) = d(ρℓ(x), px). Is ρℓ is an isometry?

Hint: Go old-school on this. Be Greek about it
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4. Suppose we have two lines ℓ1 and ℓ2. By considering how it acts on the
vertices of a triangle, describe what kind of isometry ρℓ2 ◦ ρℓ1 could be.

Hint: By rotating and translating the plane, you can assume ℓ1 is the x-
axis. By translating, you can assume the lines intersect in the origin (if
they intersect at all). What might good choices for the triangle vertices
be?

Solution 1

1. No! The distance between the two points and their images changes
from

√
2 to something smaller!

2. Yes! The distance between the points is preserved, so we can find
such an isometry. For example, we can take the composition of the
anticlockwise rotation around the origin by π

4
, which takes the line

segment (1, 0)− (0, 1) to one parallel to the desired image line segment,
with the endpoints in the correct order, with the translation taking the
leftmost endpoint of the rotated line segment to the leftmost endpoint
of the image line segment. Explicitly, this is the map(

x
y

)
7→

(
1√
2

− 1√
2

1√
2

1√
2

)(
x
y

)
+

(
1
3
2

)
.

3. We consider 3 cases, and suppress the subscript ℓ. First suppose both
x and y are on ℓ. Then

d(ρ(x), ρ(y)) = d(x, y)

by definition. If x is on ℓ, but y is not, then we consider the triangles
x− py − y and x− py − ρ(y). By construction

d(x, py) = d(x, py), ∠x−py−y =
π

2
= ∠x−py−ρ(y), d(py, y) = d(py, ρ(y))

so these triangles are equal/congruent. In particular d(x, y) = d(x, ρ(y)).
Finally, if neither x nor y are on ℓ, then we consider first the triangles
px − py − y and px − py − ρ(y). As before, these are congruent, and so
d(px, y) = d(px, ρ(y)), and ∠y − px − py = ∠ρ(y)− px − py. As

∠ρ(x)− px − py =
π

2
= ∠x− px − py
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we therefore have ∠ρx − px − ρ(y) = ∠x − px − y. Finally d(x, px) =
d(ρ(x), px), so the triangles x−px−y and the triangles ρ(x)−px−ρ(y)
are equal/congruent. Hence d(x, y) = d(ρ(x), ρ(y)).

4. We first consider the case of parallel lines. We can assume, by rotation
and translation, that ℓ1 is the x-axis, and that ℓ2 is given by y = c
for some c. The composition is determined by the image of any three
non-collinear points, so lets take (0, 0), (1, 0), and (a, b) for some a, b
with b ̸= 0. Reflection in ℓ1 fixes (0, 0) and (1, 0), and sends (a, b) to
(a,−b). It is not hard to see that reflection in y = c will send a point
(x0, y0) to (x0, y0 − 2(y − 0− c)) = (x0, 2c− y0), so the composition of
our reflections sends

(0, 0) 7→ (0, 2c), (1, 0) 7→ (1, 2c), (a, b) 7→ (a, b+ 2c)

i.e. translation by (0, 2c). Thus composition of reflections in parallel
lines gives a translation.

If the lines are not parallel, we can assume they intersect in the origin,
that ℓ1 is the x-axis and ℓ2 is given by y = mx. We consider the points
(0, 0), (1, 0), and (1,−m), and we consider them as vertices of a triangle
T We assume (1, 0) is anti-clockwise of the edge E : (0, 0) − (1,−m).
The first reflection gives

(0, 0) 7→ (0, 0), (1, 0) 7→ (1, 0), (1,−m) 7→ (1,m)

which gives a triangle T ′ congruent to T , but (1, 0) is clockwise of the
edge E ′.

As (0, 0), and (1,m) are on ℓ2, they are invariant under the reflection,
so we just need to compute the image of (1, 0). As reflection is an
isometry, the image of (1, 0) is the intersection of the circle of radius
1 centred at (0, 0) and the circle of radius m centred at (1,m) on the
other side of ℓ2 to (1, 0). As E ′ lies along ℓ2, E

′′ = E ′. We again obtain
a triangle T ′′ congruent to T , with the image of (1, 0) anti-clockwise of
the edge E ′′

If we considered a rotation of the plane so that the line y = −mx is
sent to the line y = mx, we would have a mapping such that

(0, 0) 7→ (0, 0), (1,−m) 7→ (1,m)
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so E maps to E ′′. The triangle T is mapped to a congruent triangle TR,
such that the vertex not on E ′′ is anticlockwise of E ′′. This is precisely
the image of (1, 0), and so the composition of the two reflections is a
rotation around their intersection point.

We can make this more formal, by noting that the first reflection is
given by the matrix (

1 0
0 −1

)
while the second is given by(

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
where tan(θ) = m. The product of these is precisely a rotation by 2θ.

Exercise 2 Rotations in space

Up to translation, a rotation in 3 dimensional space is given by a map of
the form x 7→ Mx, where M is a (3 × 3)-matrix such that MTM = I and
detM = 1.

1. Show that 1 is an eigenvalue ofM and hence thatM fixes a line through
the origin. Hint: consider ⟨Mv,Mv⟩ for some eigenvector v.

2. Hence conclude that there exist a matrix P such that

P−1MP =

a b 0
c d 0
0 0 1


where (

a b
c d

)(
a c
b d

)
=

(
1 0
0 1

)
and ad− bc = 1.

Solution 2

1. Consider an eigenvector v of M , with eigenvalue λ. We have that

⟨Mv,Mv⟩ = ⟨MTMv, v⟩ = ⟨v, v⟩
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and

⟨Mv,Mv⟩ = ⟨λv, λv⟩
= |λ|2⟨v, v⟩.

As v ̸= 0, we have |λ|2 = 1 for all eigenvalues. The eigenvalues of M
satisfy a cubic polynomial

det(M − xI) = 0

which either has 3 real roots, or 1 real root and two complex conjugate
roots. Call the roots λ1, λ2, λ3. As

λ1λ2λ3 = det(M) = 1, and |λi|2 = 1

we have (up to relabelling) one of
λ1 = λ2 = λ3 = 1,

λ1 = 1, λ2 = λ3 = −1,

λ1, λ2 = λ3.

In all cases, we have 1 as an eigenvalue.

Let w be the corresponding eigenvector. Then the like {tw | t ∈ R} is
fixed by M .

2. Let w be an eigenvector with eigenvalue 1, of norm 1. We can find vec-
tors u and v such that {u, v, w} is an orthonormal basis (via Graham-
Schmidt for example), and the matrix P = [u v w] acts as an orthonor-
mal change of basis matrix, so that P−1MP is the matrix whose first
column is determined by Mu, whose second column is determined by
Mv and whose third column is determined by Mw. We have

Mu = au+ cv + ew, Mv = bu+ dv + fw, Mw = w

for some a, b, c, d, e, f , so

P−1MP =

a b 0
c d 0
e f 1


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By orthonormality, we have that

e = ⟨w,Mu⟩ = ⟨Mw,Mu⟩ = ⟨MTMw, u⟩ = ⟨w, u⟩ = 0

and similarly f = 0, as needed. The conditions on a, b, c, d follow from
properties of the determinant and orthonormality

P−1 = P T ⇒ (P−1MP )(P−1MP )T = I, det(P−1MP ) = det(M) = 1

6


