

MAU22302/33302 - Euclidean and non-Euclidean Geometry

Tutorial Sheet 4

Trinity College Dublin

Course homepage

Exercise 1 *Reflection decompositions*

Let's decompose some examples of isometries of \mathbb{R}^2 into reflections.

1. Consider the isometry $x \mapsto x + (1, 1)$. Can you write this as a composition of two reflections? Can you find more than one pair of reflections whose composition is this translation?
2. Consider the rotation by $\pi/3$ anticlockwise around $(0, 0)$. Can you write this as a composition of two reflections? Can you find more than one pair of reflections whose composition is this rotation?
3. Can you write the rotation by $\pi/3$ anticlockwise around $(1, 1)$ as a composition of reflections? Can you do it with only two reflections?

Exercise 2 *Triangulations of polygons*

1. How many distinct strong triangulations are there of a regular n -gon for $n = 3, 4, 5, 6$? What if we only consider strong triangulations distinct up to isometries (i.e. rotation and reflection)?
2. Show that for any polygon P with n vertices, the sum of the internal angles is $(n - 2)\pi$.

Exercise 3 *If you have time for further reflection...*

We define reflection in \mathbb{R}^3 as follows. Suppose we have a plane P and a point x . If $x \in P$, then the reflection of x in P is x . Otherwise consider the normal line to P through x , intersection P at y . The reflection in P of x is then the unique other point \tilde{x} on the normal line such that $d(x, y) = d(\tilde{x}, y)$. How could we show that reflection is an isometry? Can we reduce to the case of \mathbb{R}^2 ? Would this piggybacking let us show that reflection is an isometry in \mathbb{R}^n for all $n \geq 2$?