

MAU22302/33302 - Euclidean and non-Euclidean Geometry

Tutorial Sheet 1

Trinity College Dublin

Course homepage

The use of electronic calculators and computer algebra software is allowed.

Exercise 1 *Euclid's assumptions and equilateral triangles*

As noted in lectures, Euclid's proof of the existence of equilateral triangles with given side length relies on the idea that the circles C_A and C_B centred at points A and B with shared radius $|AB|$ must intersect. Let's try to justify this.

- (i) Give a definition of points *inside* a circle and points *outside* a circle.
- (ii) Show that there is a point on C_A inside C_B and a point on C_A outside C_B , using only the postulates.
- (iii) Hence, informally explain why C_A and C_B must intersect.
- (iv) What kind of other assumptions would we need to make to make this explanation formal. Did we have to use any of them in the previous argument.

Exercise 2 Perpendiculars through a point

(i) Let ℓ be a line containing distinct points A and B . Let P and Q be distinct points such that

$$|PA| = |PB|, \quad |QA| = |QB|.$$

Assume that PQ is not parallel to ℓ . Using the postulates and the first 5 propositions, show that the line PQ , suitably extended, is perpendicular to ℓ . (You may need to consider the cases of P, Q on the same/opposite sides of ℓ separately. Pictures may help!)

(ii) Hence, describe how to construct a line through a point P perpendicular to a line ℓ .

(iii) Can PQ ever be parallel to ℓ ? Drop a perpendicular from each and compare the intersections. You may assume that the midpoint of a line segment is unique.

Hint: The last part really benefits from a diagram. It can be a bit hard to write down clearly.

Exercise 3 Inner products and norms

Recall that an inner product on \mathbb{R}^n is a bilinear map

$$I : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$$

such that

$$I(x, y) = I(y, x), \quad \text{and} \quad I(x, x) \geq 0$$

with equality if and only if $x = 0$. Let $\langle \cdot, \cdot \rangle$ denote the usual dot product.

(i) Show that there exists a matrix A such that

$$I(x, y) = \langle x, Ay \rangle$$

What are some properties of A ?

(ii) Every inner product defines a norm by $\|x\|^2 = I(x, x)$. We showed that a norm comes from an inner product if and only if

$$\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2.$$

Does the norm

$$\|(x_1, \dots, x_n)\| = |x_1| + |x_2| + \dots + |x_n|$$

arise from an inner product?