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0 A brief history of geometry

Geometry is a slippery beast to define precisely, but is probably best described as
the study of shapes, sizes, and spatial properties. It is a field with an extremely
long history, and much early mathematics was understood through the lens of
geometry. Modern geometry can be broadly split into two categories: Euclidean
geometry and non-Euclidean geometry, though other adjectives can be applied.
For example, there is also projective geometry (often classified as non-Euclidean)
in which there is no great notions of distance. We can also consider discrete
geometry, which studies things such as tesselations, triangulations, and lattice
polytopes. We will try to cover some of all of these areas in this course, though
the focus will be on Euclidean and non-Euclidean geometries with notions of
length.

Euclidean geometry is the geometry we are probably most familiar with. It
is the geometry we are introduced to in our early schooling, is considered a core
part of most second level maths curricula, and is the geometric framework on
which we built most of our understanding of the physical world. It is based on
the axioms set out by Euclid in the Elements.

Euclid was a Greek mathematician, alive circa 300 BCE, who wrote a col-
lection of 13 books laying out the foundations of mathematics. The first six of
these lay out a “flat” geometry, discussing properties of lines, angles, circles, and
other plane figures. Books VII-X cover a good deal of number theory, includ-
ing prime factorisations, common divisors, and irrational numbers, though it is
all understood through a geometric language. Books XI and XII discuss solid
geometry, and even feature some early ideas of calculus in relation to volumes.
Book 13 is a bit more mixed, combining 2D and 3D geometry, and deriving
geometric inequalities.

Some of the key defining features of Euclidean geometry include familiar
results such as

• The sum of the angles in a triangle is 180◦,

• If a, b, c are the sides of a right angled triangle, with c opposite the right
angle, then

a2 + b2 = c2

• If C is the circumference of a circle with diameter D, then C = πD.

Despite being the most ubiquitous form of geometry, Euclidean geometry is not
without its controversies. Most famously, Euclid’s fifth axiom (or postulate)
was widely believed to be a consequence of the first 4 until the 1800s. The
parallel postulate was considered so artificial compared to the other postulates
that a substantial amount of time was spent trying to derive it as a theorem,
with very little success. Despite having since shown that the parallel postulate
is independent of the others, you still find a lot of attempts to derive it, or to
replace it with a more “natural” assumption!

Non-Euclidean geometry came about from accepting that the parallel pos-
tulate did not need to hold, and was formally developed first in the early 1800s.
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A system of geometry in which the parallel postulate did not hold was first
discussed by Gauss in a series of letters, and then was fully developed by
Lobachevsky. This system of geometry was an example of what is now knowns
as hyperbolic geometry. In hyperbolic geometry, we find a number of counter
intuitive results:

• Given a line ℓ and a point P not on ℓ, there exists infinitely many lines
through P that do not intersect ℓ,

• The sum of angles in a triangle is less that 180◦. In fact, there are hyper-
bolic triangles with arbitrarily small angle sums!

• The ratio of the circumference of a circle to its diameter is greater than
π.

Examples of hyperbolic geometries are often difficult to visualise. Locally, a
hyperbolic surface looks something like the surface of a saddle, with coral reefs
giving a decent impression of the overall shape. A very well known visualisation
of a hyperbolic surface is the Poincaré disc, made popular in M.C. Escher’s
‘Angels and Devils’. Building three dimensional models took longer. There were
early attempts with very delicate paper structures, but now a very popular way
of building models of a hyperbolic plane is via crochet.

The next main example of non-Euclidean geometry to be formally developed
was elliptic geometry, studied in the framework developed by Riemann in the
1850s. Technically, elliptic geometry has been around for much longer, with a
very complete theory of spherical trigonometry being developed for navigation
purposes. However, as geometry on a sphere or ellipsoid does not satisfy the the
first four postulates of Euclidean geometry, and spheres are very easy to consider
in a Euclidean framework, this area was largely neglected until Riemann. In
elliptic geometry, we find

• Any two lines will intersect if extended far enough, so parallel lines do not
exist,

• The sum of angles in a triangle is greater than 180◦. A well known lateral
thinking problem features an Arctic explorer walking in a triangle where
every angle is a right angle!

• The ratio fo the circumference of a circle to its diameter is less than π.

Also under the umbrella of non-Euclidean geometry is projective geometry,
developed by Poncelet, largely while as a prisoner of war during the Napoleonic
wars. Projective geometry has a lot of similarities to Euclidean geometry, but
includes “points at infinity” and lacks any real notions of distances and angles.

Non-Euclidean geometry, despite being less familiar, has become very im-
portant in the modern world. Not only does it provide inspiration for art and
architecture, but non-Euclidean frameworks were essential for the development
of general relativity, and can be used to streamline computer graphics and nav-
igation systems.
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1 Classical Euclidean Geometry

Classical (or synthetic) Euclidean geometry is what most of us think of when
we think of geometry. We consider only lengths, angles, and ratios. There is no
algebra as in coordinate geometry and we rely on ideas of congruent triangles,
intersecting circles, and so on. We will try to set out a development of synthetic
geometry starting from Book I of the Elements.

Book I of the Elements begins with 23 definitions, 5 common notions, and
5 postulates. Many of the definitions rely on a number of topological assump-
tions, as well as an inherent continuity, that we will accept freely. Even with this
caveat, most of the definitions would still be considered quite imprecise by mod-
ern standards. Even by Aristotle’s standards, many of these definitions would
have been considered unscientific, and alternatives were proposed by many of
Euclid’s contemporaries.

Let us start with (a sample of) the 23 definitions.

Definition 1.1. We define the following geometric concepts

1. A point is that which has no part.

2. A line is breadthless length.

3. The extremities of a line are points.

4. A straight line is a line which lies evenly with the points on itself.

5. A circle is a plane figure contained by a single line such that all straight
lines falling upon it from one point among those lying within the figure are
equal to one another

Note that Euclid considers all curves as lines. Today we would usually
reserve the word “line” for a straight line. Indeed, Euclid would consider a
circle (the boundary) to be a line. There are also a number of ambiguities or
implicit assumptions in these definitions and their later usage. For example,
in modern mathematics, we would consider a circle to the the set of points
equidistant from a given centre point, and would refer to the interior of this
figure as a disc. Euclid instead follows the more common convention of referring
to both the disc and its boundary as a circle. His definition of a point does not
really distinguish between a single point or a set of discrete points. There
is an implicit assumption of “oneness”. There is a degree of “obviousness”
assumed throughout the elements which does leave many of Euclid’s arguments
incomplete by modern standards.

His definition of a straight line is arguably one of the most tenuous, and was
contested even in his day. Plato proposed the alternative definition of a straight
line:

A straight line is a line whose middle covers its ends.
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Proclus gave two alternative definitions:

A straight line is a line which is fixed by any rotation fixing its
endpoints.

A straight line is a line stretched to the utmost.

The first two of these reflect a nice three dimensional understanding of a
straight line, with Plato suggesting that a straight line is a line that looks
like a point from the appropriate angle, while Proclus considers rotations in
three dimensional space. The last of these is probably the closest to a modern
definition of a straight line, as the curve of shortest length connecting two points.

After the definitions, we introduce Euclid’s common notions - these are
meant to be truths so foundational, that there can be no debate.

Common Notions 1.2. 1. Things that are equal to the same thing are equal
to one another,

2. If equals be added to equals, the totals are equal,

3. If equals be subtracted from equals, the remainders are equal,

4. Things which coincide with one another are equal to one another,

5. The whole is greater than the part.

Only the fourth of these needs comment: as Euclid does not ever consider
lengths or numbers explicitly, instead using line segments as stand-ins, this is
essentially saying that if two line segments can be moved to coincide with one
another, they were equal in length.

Finally we get to the postulates, which would be referred to as axioms in
modern language. These are notions that, while less obvious than the common
notions, are still meant to be self-evident truths and/or reasonable assumptions.

Postulates 1.3. Let the following be postulated:

• To draw a straight line from any point to any point,

• To produce a finite straight line continuously in a straight line,

• To describe a circle with any centre and distance,

• That all right angles are equal to one another,

• That, if a straight line falling on two straight lines makes the interior
angles on the same side less than two right angles, the two straight lines
- if produced indefinitely - meet on that side on which are the angles less
than two right angles.

5



Remark 1.4. Any geometric framework satisfying the first four of these postu-
lates is called an absolute geometry. Hyperbolic geometry will be an example of
an absolute geometry. Elliptic geometry will not be, as there will be a maximal
circle we can draw on a sphere.

The fifth postulate, usually called the parallel postulate, stands out. It is
not hard to see why this was controversial. It is long and complex, and have
the “feel” of a theorem. Many people attempted to propose alternatives, or to
prove it, but with little success. Ptolemy attempted to show the alternate angles
theorem held and derived the parallel postulate from this. Proclus attempts to
show that two lines which do not meet must be at constant distance to one
another. Lambert attempts an argument using the internal angles of a triangle
and succeeds in showing the parallel postulate is incompatible with spherical
geometry. Legendre arguably comes the closest to “proving” the parallel postu-
late, with an argument relying on similar triangles. Unfortunately, the results
about similar triangles needed rely on the parallel postulate, but the argument
does lead to a somewhat compelling case for use to replace the parallel postulate
with an axiom about similarity.

Nowadays, we usually replace the parallel postulate with a reformulation
due to Playfair.

Postulate 1.5. Call two lines parallel if they do not intersect, even when ex-
tended indefinitely in either direction. Given a straight line and a point not
contained in the line, there exists exactly one straight line through this point
parallel to the first line.

This is still more complex than the other postulates, but is at least a bit
more manageable.

1.1 Proving some propositions

Let us now proceed through the first five propositions of the Elements, seeing
what we can derive “only” from the postulates. The arguments presented largely
agree with Euclid’s, modified slightly for modern palates. In particular, we will
use “line” to mean “straight line”.

Remark 1.6. Accompanying diagrams will be added at a later point.

Proposition 1.7. Any finite straight line is the base of an equilateral triangle.

Proof. We will show this by giving a construction for the equilateral triangle.
Let AB be a given finite line segment. Using Postulate 3, we construct a circle
CA centred at A of radius |AB|, and a circle CB centred at B of radius |BA| =
|AB|. These circles must intersect as a point C.

We claim ABC is an equilateral triangle. Indeed we have that |AC| = |AB|
by the definition of a circle. Similarly

|BC| = |BA| = |AB|
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by the definition of a circle. By common notion 1, we therefore have

|AC| = |BC|

and so ABC is an equilateral triangle.

Remark 1.8. We already have our first hole in a proof in this proposition.
Why do the circles CA and CB intersect? t’s obvious, right? This issue of
intersections existing is a recurring issue in much the the Elements. Usually, it
is obvious, but as proofs get more complex, its important to have a justification
for why this is so!

Proposition 1.9. Given a point A and a straight line BC, there exists a point
D such that |AD| = |BC|.

Proof. It suffices to construct such a point D. Using Proposition 1.7, we can
construct an equilateral triangle ABE. Using Postulate 3, we construct a circle
CB centred at B of radius |BC|. Using Postulate 2, we extend the line EB
beyond B to intersect CB at a point F . Construct a circle CE centred at E of
radius |EF |. Extend EA through A to intersect CE at D. By construction, we
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have
|EF | = |ED|, |EA| = |EB|.

By the third common notion, we must therefore have |AD| = |BF |. As |BF | =
|BC| by construction, we therefore get |AD| = |BC|.

Proposition 1.10. Given two unequal straight lines AB and PQ with |AB| <
|PQ|, there exists a line CD such that

|AB|+ |CD| = |PQ|.

Proof. We use Proposition 1.9 to construct a line BD such that |BD| = |PQ|.
We then construct a circle CB of radius |AB| centred at B to intersect the line
|BD| at C. By construction |AB| = |BC|, and we clearly have

|PQ| = |BD| = |BC|+ |CD| = |AB|+ |CD|.

Proposition 1.11. Let ABC and DEF be triangles such that |AB| = |DE|,
|AC| = |DF |, and ∠BAC = ∠EDF . Then |EF | = |BC|, ∠ABC = ∠DEF ,
and ∠ACB = ∠DFE. That is, ABC = DEF as triangles.

Proof. We apply the triangle ABC to DEF by translating, rotating, and re-
flecting ABC so that A coincides with D, AB lies along DE, and AC is on the
same side of AB as DF . As |AB| = DE, B coincides with E (using common
notion 4). As ∠BAC = ∠EDF , AC lies along DF , and we similarly conclude
that C coincides with F . Therefore BC coincides with EF , by Postulate 1
(there is a unique straight line between two points) and so, by common notion
4, |BC| = |EF |. In fact, ABC coincides with DEF , from which all claims
follow.

Proposition 1.12. In an isosceles triangle, the angles at the base are equal to
one another.
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Proof. Let ABC be an isosceles triangle with |AB| = |AC|. Extend AB to AD
and AC to AE, with |AE| > |AD|. Take a point F at random on BD and
construct G on AE such that |AF | = |AG|. Construct the lines BG and CF .
As |AB| = |AC| and |AF | = |AG|, common notion 3 implies |BF | = BG|. We
also have that

∠FAC = ∠BAC = ∠GAB

and so by Proposition 1.11, we have that |FC| = |GB|, and FAC = GAB.
Hence

∠ACF = ∠ABG, ∠AFC = ∠AGB.

Hence, we therefore have BFC = CGB as triangles, by Proposition 1.11. Thus
∠FBC = ∠GCB. As ∠ABF = ∠ACG, we we subtract to find ∠ABC =
∠ACB.

Remark 1.13. In English education systems, this proposition is sometimes re-
ferred to as the pons asinorum or “the bridge of asses”. The origins of this
nickname are a bit unclear, with some people claiming it comes from the dia-
gram looking a bit lit a bridge. However, the name came to be associated with
this proposition being the first difficulty most students encounter, and so stu-
dents who couldn’t master it were deemed to be “asses”. Understanding the fifth
proposition marked you as a person of normal intelligence.

Interestingly, this nickname also appeared in the French education system,
but for the 47th proposition, the pont des ânes, better known to use as Pythagorus’
Theorem. This proposition has acquired many nicknames, including the bridge’s
throne and the Fransciscan’s cowl.
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Book I continues in this fashion, establishing standard results about con-
structions of bisectors and perpendiculars, as well as results about congruent
triangles, right angled triangles, opposite angles. We will now skip ahead to the
16th proposition, to sample something more complex.

Proposition 1.14. The exterior angle in a triangle is greater than either inte-
rior angle.

Proof. Let ABC be a triangle, and extend BC through C to a point D. Let
E be the midpoint of AC. Extend BE through E to a point F such that
|BE| = |EF |. As |AE| = |EC|, and opposite angles ∠AEB and ∠CEF are

equal, we have that AEB = CEF as triangles. In particular

∠BAC = ∠BAE = ∠FCE < ∠DCA

as claimed.

Proposition 1.15. The sum of two internal angles of a triangle is at most two
right angles

Proof. Let ABC be a triangle. Extend BC through C to a point D. By Propo-
sition 1.14,

∠ACD > ∠BAC

and hence
∠BCD = ∠BCA+ ∠ACD > ∠BCA+ ∠BAC.

As BCD is a straight line, ∠BCD is equal to two right angles. The claim then
follows.

Remark 1.16. From here onwards, we will start to measure angles in radians,
so that we no longer need to use two right angles as our reference point.

Skipping further ahead, past the ability to drop a perpendicular from a point,
we will consider the 27th proposition.

Proposition 1.17. 27 Given two distinct points, there exists a pair of parallel
lines, one through each point.
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Proof. Construct the line PQ and extend beyond both points as far as is
needed. Using early propositions, discussed in the tutorial, we can construct
lines through P and Q respectively, perpendicular to PQ. Suppose these lines
intersect in R. Then PQR is a triangle with two internal right angles, in con-
tradiction to Proposition 1.15. Thus, these perpendiculars cannot intersect and
are therefore parallel.

Remark 1.18. This proposition relies only on the first four postulates, and so
parallel lines exist in any absolute geometry. It is also the last proposition before
the parallel postulate starts to appear!

The 28th proposition is the first proposition to use the parallel postulate,
but is (possibly) one of the first propositions to be proved in the Leaving Cert.

Proposition 1.19. If a straight line is cut by two parallel lines, they cut off
equal alternate interior angles.

Proof. Let ℓ1 and ℓ2 be parallel lines cutting the line ℓ. Let θ1, θ2 be the interior
angles made by the intersection of ℓ1 with ℓ. Similarly let ϕ1, ϕ2 be the interior
angles from the intersection of ℓ2 with ℓ, with each ϕi on the same side of ℓ as
the corresponding θi. If θ1 ̸= ϕ2, then we can assume θ1 > ϕ2, without loss of
generality. Hence

θ2 = π − θ1 < π − ϕ2 = ϕ1

and so
θ2 + ϕ2 < ϕ1 + ϕ2 = π

Postulate 5 then implies that ℓ1 and ℓ2 (suitably extended) must intersect on
the same side as θ2 and ϕ2. This gives a contradiction, and hence we must have
θ1 = ϕ2.

2 Analytic approaches to geometry

While Riemann probably best gets to lay claim to forging modern geometry, the
necessary framework dates back to Descartes and his introduction of coordinates
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for points on the plane. By assigning a pair (x, y) to every point in the plane in
a sensible way, we can suddenly translate questions of geometry into questions
of algebra. Suddenly, many geometry problems become “easier”, reducing to
(often complicated) algebraic manipulations. This switch to coordinates, is how
we define many geometries today. However, it is not strictly necessary that we
have coordinates for every point. As long as we have a way to define straight
lines and circles, and a way to measure angles, we can recreate build a quite
reasonable theory of geometry. In this section, we will introduce some of the
framework for this, before recasting Euclidean geometry in this language and
studying it’s properties.

Note 2.1. From this point onwards, a degree of familiarity with linear alge-
bra over R is assumed. Please see Appendix A for a hopefully comprehensive
overview of the ideas we’ll need.

To define circles, we need a notion of distance. This is captured in the idea
of a metric space.

2.1 A review of metric spaces

Definition 2.2. A metric space is a set X equipped with a function d : X×X →
R such that

1. d(x, y) ≥ 0 for all x, y ∈ X, with equality if and only if x = y,

2. d(x, y) = d(y, x) for all x, y ∈ X,

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We refer to d as a metric or a distance function.

Given a notion of distance, we can define a circle in a metric space as the set
of points a fixed distance from a given centre point. We can also (almost) define
a notion of a straight line. Strictly speaking, to define a straight line, we need
a way to associate meaningful lengths to curves in a metric space, which veers
into calculus and differentiable structures. We will return to this in more detail
when discussing non-Euclidean geometries, but will give a “pseudo-definition”
for now.

Definition 2.3. A curve in a metric space (X, d) is the image of a continuous
function

γ : [0, 1] → X.

The points γ(0) and γ(1) are called the endpoints of the curve. A curve between
points x and y in X is a curve whose endpoints are x and y.

Pseudo-definition 2.4. A straight line between points x and y in a metric
space (X, d) is a curve between x and y such that, for any a < b ∈ [0, 1] and
z ∈ X, if

d(γ(a), γ(b)) = d(γ(a), z) + d(z, γ(b))

then there exists a < c < b such that z = γ(c).
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When we have a well defined notion of length of a curve, curves of minimal
length between two points are called geodesics. These play an important role in
Riemannian geometry and theoretical physics. A key notion is general relativity
is that the kinematics of light is determined by light following a geodesic in space
time. However, determining geodesics can often be difficult.

Remark 2.5. It is possible to give a purely metric definition of a geodesic. A
(metric) geodesic is a curve γ such that, for every t ∈ (0, 1), there exists an
open interval I ∋ t such that

d(γ(t1), γ(t2)) = vγ |t1, t2|

for all t1, t2 ∈ I and constant vγ . However, we only need a loose notion of a
geodesic, so we will not dwell on this.

Example 2.6. Here are a number of metric spaces, along with their straight
lines.

• (Rn, dE) with distance defined by the Euclidean norm:

dE(x, y) = ∥x− y∥

This essentially defines Euclidean geometry. The straight lines are exactly
lines, and are unique!

• The unit circle (S1, dθ) with distance given by the angle between two points
gives a metric space, where a straight line between x and y is the shortest
arc between x and y. This is unique unless x and y are diametrically
opposite. This means (S1, dθ) cannot be an absolute geometry.

• (R2, d1), where

d1 ((x, y), (z, w)) = |x− z|+ |y − w|

is the Manhattan (or taxicab) metric. This has many shortest paths be-
tween a pair of points, with any path consisting of a sequence of horizontal
and vertical line segments giving a straight line.

• (R2, dIE) where

dIE((x, y), (z, w)) = dE((x, y), (0, 0)) + dE((z, w), (0, 0))

is the Irish Rail metric. We cannot do geometry here, as it has no curves!

Remark 2.7. Given a metric space (X, d), we can always define another metric
by

d̃(x, y) =
d(x, y)

1 + d(x, y)

This new metric is bounded, so that (X, d̃) is a metric space of finite diameter.
The metrics d and d̃ are equivalent. A sequence in X converges with respect to
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d if and only if it converges with respect to d̃, and the metric spaces (X, d) and
(X, d̃) have the same Cauchy sequences. However, the geometries associated to
them could be distinct. As d̃ is bounded, it cannot define an absolute geometry,
while d possible could.

As noted in Remark 2.7, the kinds of geometry we can define on a space
depends explicitly on the metric. Homeomorphic spaces could have distinct
geometric properties, and so our usual notions of equivalence for metric spaces
is not sufficient.

Definition 2.8. Let (X, dX) and (Y, dY ) be metric spaces. We say f : X → Y
is an isometry if f is a bijection and

dY (f(x1), f(x2)) = dX(x1, x2)

for all x1, x2 ∈ X.

Isometries will preserve all geometric properties, and so are natural choices
for thinking about equivalence of geometries. For example, Euclidean geometry
should be translation invariant. Translation by a constant vector v

Tv : Rn → Rnx 7→ x+ v

defines an isometry Tv : (Rn, dE) → (Rn, dE).

2.2 Euclidean space

With this discussion of isometries in mind, rather than define Euclidean space
as (Rn, dE), we will instead allow any isometric space.

Definition 2.9. We say a metric space (X, d) is an n-dimensional Euclidean
space if there is an isometry

Φ : (X, d) → (Rn, dE)

i.e. a bijection Φ : X → Rn such that

d(x, y) = ∥Φ(x)− Φ(y)∥

for all x, y ∈ X. We call this isometry an affine coordinate system (ACS). We
will refer to any n-dimensional Euclidean space with an affine coordinate system
as an n-dimensional Euclidean geometry.

Remark 2.10. Any two n-dimensional Euclidean geometries are isometric. We
write En for the isometry class of n-dimensional Euclidean geometries, and will
define operations on En by choosing a particular representative.

We can think of an ACS as defining coordinate axes in X, in particular,
fixing an origin.
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Example 2.11. • A translation Tv : Rn → Rn, Tv(x) = x + v is an isom-
etry, and so defines an affine coordinate system. We can think of this as
making v the new origin.

• The reflection (x, y) 7→ (x,−y) is an isometry R2 → R2, and defines an
affine coordinate system. This changes the orientation of the y-axis.

• Given any affine coordinate system Φ : X → Rn, the composition Tv ◦ Φ
defines a new ACS, shifting our chosen origin.

2.3 Angles and lines in Euclidean geometry

By choosing an affine coordinate system, we can exploit the vector space struc-
ture of Rn in order to begin defining things like lines and angles in (some)
En. For example, recall the relationship between the (small) angle between two
vectors and their inner product:

⟨v, w⟩ = ∥v∥∥w∥ cos(θv,w).

Thus, we can use this to define the angle between two lines in a Euclidean
geometry.

Definition 2.12. Given an affine coordinate system Φ : X → Rn, and points
u, v, w ∈ X, we define the angle ∠uvw by

∠uvw = cos−1

(
⟨Φ(u)− Φ(v),Φ(w)− Φ(v)⟩
∥Φ(u)− Φ(v)∥∥Φ(w)− Φ(v)∥

)
.

For angle to be a well defined geometric concept, we need that if ϕ : X → Y
is an isometry of n-dimensional Euclidean geometries, we have

∠uvw = ∠ϕ(u)ϕ(v)ϕ(w)

for all u, v, w ∈ X. It suffices to show that it is independent of choice of ACS
for a fixed n-dimensional Euclidean space X.

Lemma 2.13. Let (X, d) be an n-dimensional Euclidean space and let u, v, w ∈
X. The angle ∠uvw is independent of choice of affine coordinate system.

Proof. Recall that if Φ : X → Rn is an ACS, then

∥Φ(x)− Φ(y)∥ = d(x, y)

for all x, y ∈ X. As such, if we can rewrite the angle in terms of norms, then
∠uvw will depend only on distance in (X, d), not on the choice of ACS. By
expanding the right hand side in terms of inner products, we can easily show

⟨Φ(u)− Φ(v),Φ(w)− Φ(v)⟩ =1

2

(
∥Φ(u)− Φ(v)∥2 + ∥Φ(w)− Φ(v)∥2

−∥(Φ(u)− Φ(v))− (Φ(w)− Φ(v))∥2
)

=
1

2
(d(u, v)2 + d(w, v)2 − d(u,w)2).

and so ∠uvw depends only on the distance in X,
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Remark 2.14. This can be used to define angles in any metric space:

∠uvw = cos−1

(
d(u, v)2 + d(w, v)2 − d(u,w)2

2d(u, v)d(w, v)

)
.

This formula is also quite familiar to us! Rearranging and writing

a = d(u, v), b = d(w, v), c = d(u,w), θ = ∠uvw

we find our formula is equivalent to cosine rule for triangles:

c2 = a2 + b2 − 2bc cos(θ).

Having defined angles, the next key component of geometry to define is
straight lines. As noted in Example 2.6, straight lines in (Rn, dE) are straight
lines as we usually think of them. We know that every such line can be described
as a set

ℓ = {a+ λv | λ ∈ R}

for some a, v ∈ Rn. A reasonable definition of a line in an n-dimensional Eu-
clidean geometry is therefore defined in terms of such lines.

Definition 2.15. A subset A ⊂ Rn is called an affine subspace of dimension k
if there exists a vector subspace V ⊂ Rn of dimension k and a vector a ∈ Rn

such that
A = {a+ v | v ∈ V }.

Example 2.16. An affine subspace of dimension 1, usually called an affine
line, is precisely a line

ℓ = {a+ λv | λ ∈ R}

Definition 2.17. Given a choice of affine coordinate system Φ : X → Rn, a
line in (X, d) is the inverse image Φ−1(ℓ) of an affine line ℓ ⊂ Rn.

It remains to be seen if this is a geometric definition of a line, as this currently
depends explicitly on a choice of ACS. A line for a given Φ may not be a line
for a different choice of ACS. We will handle this momentarily.

Definition 2.18. The points x1, . . . , xm in an n-dimensional Euclidean geom-
etry (X, d) with ACS Φ : X → Rn are called collinear if they lie on a single
line.

Remark 2.19. Any two points are collinear. The points x and y lie on the line
ℓ determined by

Φ(ℓ) = {Φ(x) + λ(Φ(y)− Φ(x)) | λ ∈ R}.

In order to ensure that collinearity is geometric, we need to show that it is
independent of a choice of ACS, depending only on distances in X.
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Proposition 2.20. Three points v1, v2, v3 ∈ Rn are collinear if and only if

∥v1 − v2∥+ ∥v2 − v3∥ = ∥v1 − v3∥

up to possible relabelling the points.

Proof. If the points are collinear, then there exist a,w ∈ Rn and λ1, λ2, λ3 ∈ R
such that

vi = a+ λiw

and we compute

∥v1 − v2∥+ ∥v2 − v3∥ = (|λ1 − λ2|+ |λ2 − λ3|) ∥w∥.

By relabelling the points if needed, we can assume

λ1 ≥ λ2 ≥ λ3

and so we can remove the absolute values to obtain

∥v1 − v2∥+ ∥v2 − v3∥ = (λ1 − λ3) ∥w∥
= |λ1 − λ3|∥w∥
= ∥v1 − v3∥.

Conversely, if the equality holds, the Exercise 8.17 implies

v2 = v1 + λ0(v3 − v1)

for some real λ0. Thus v1, v2, v3 lie on the line

ℓ = {v1 + t(v3 − v1) | t ∈ R}.

Corollary 2.21. Collinearity in (X, d) is independent of choice of affine coor-
dinate system.

This already implies that lines are independent of a choice of ACS! As such,
we can give a purely algebraic proof of one of Euclid’s early propositions.

Lemma 2.22. Given a non-degenerate triangle in Rn, the longest side is op-
posite the largest angle.

Proof. Let u, v, w be the vertices of the triangle. We will write

a = d(u, v), b = d(v, w), c = d(w, u).

It will suffice to show that if a > b, then ∠uwv > ∠vuw. We have that

∠uwv = cos−1

(
b2 + c2 − a2

2bc

)
, ∠vuw = cos−1

(
a2 + c2 − b2

2ac

)
.
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As the function cos−1 is decreasing on [−1, 1], it is enough to show

b2 + c2 − a2

2bc
<

a2 + c2 − b2

2ac
.

Rearranging this, this is equivalent to

0 < a2b− ab2 − ac2 + bc2 + a3 − b3

We can pull out a factor of (a− b) from the right hand side, and so it is enough
to show

0 < (a− b)((a+ b)2 − c2)

As a > b, (a − b) > 0. As a + b > c, (a + b)2 − c2 > 0. Hence this inequality
holds, and the claim follows.

We might also be interested in affine subspaces of higher dimension, and how
we can discuss these spaces in a general Euclidean space. For example, we can
show that, given an ACS, a non-degenerate triangle defines a plane.

Definition 2.23. A plane in Rn is an affine subspace of dimension 2. A plane
in a Euclidean space (X, d) is a subspace P such that Φ(P ) is a plane in Rn.

Lemma 2.24. A non-degenerate triangle in Rn is contained in a unique plane.

Proof. Let a, b, c be the vertices of the triangle. Then a, b, c are contained in the
plane

P = {a+ s(b− a) + t(c− a) | s, t ∈ R}

Clearly, the lines

ℓa,b = {a+ s(b− a) | s ∈ R},
ℓa,c = {a+ t(c− a) | t ∈ R}

are contained in P . The line

ℓb,c = {b+ λ(c− b) | λ ∈ R}
= {a+ (b− a) + λ(c− a− b+ a) | λ ∈ R}
= {a+ (1− λ)(b− a) + λ(c− a) | λ ∈ R}

is similarly contained within P . The uniqueness of P is left to the reader.

Corollary 2.25. A non-degenerate triangle in a Euclidean space (X, d) with
affine coordinate system Φ is contained within a unique plane
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2.4 Affine transformations and isometries

Rather than trying to show that all of our definitions of geometric ideas in En

are truly geometry (independent of choice of ACS for a given representative
(X, d)) by expressing every property in terms of distance, it would be easier to
have some way to compare difference affine coordinate systems.

Suppose (X, d) is an n-dimensional Euclidean space with two affine coordi-
nate systems

Φ1,Φ2 : X → Rn.

Then, the composition
Φ1 ◦ Φ−1

2 Rn → Rn

is an isometry. Thus to describe all affine coordinate systems for X, it suffices to
describe all isometries Rn → Rn. Such isometries are often called rigid motions.

Example 2.26. Some examples of rigid motions in R3 include rotations around
an axis, reflection in a plane, and translation by a fixed vector. Note that all of
these preserve collinearity, angles, and intersections. Indeed, these are all trans-
formations that were understood to preserve geometric statements in classical
Euclidean geometry.

Remark 2.27. Rigid motions are generally not linear maps. Can you suggest
a few that are linear?

Any property invariant under a rigid motion is independent of choice of affine
coordinate system, and so understanding these will be our next major goal.

Note 2.28. From this point, some basic knowledge of group theory is assumed.
Primarily, the definition of a group and a number of examples. The necessary
background is outlined in Appendix B.

Lemma 2.29. Given a metric space (X, d) the set of isometries X → X forms
a group under composition

Proof. Composition is clearly associative and the composition of two isometries
is an isometries:

d(Ψ(Φ(x)),Ψ(Φ(y))) = d(Φ(x),Φ(y))

= d(x, y).

The map I : x 7→ x is an isometry and Φ ◦ I = I ◦ Φ = Φ. Every isometry
is a bijection, so there exists an inverse map (of sets), and this inverse is an
isometry:

d(Φ−1(x),Φ−1(y)) = d(Φ(Φ−1(x)),Φ(Φ−1(y)))

= d(x, y).
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Definition 2.30. Denote the groups of isometries of (X, d) by Isom(X, d). If
the metric d has been specified already, we will often omit it.

Lemma 2.31. Let (X, d) be a Euclidean space with affine coordinate system
Φ : X → Rn. Then there is an isomorphism

Isom(X) ∼= Isom(Rn)

Proof. If f ∈ Isom(Rn), then it is easy to check that Φ−1fΦ ∈ Isom(X). Simi-
larly, if F ∈ Isom(X), then ΦFΦ−1 ∈ Isom(Rn). These are clearly inverse, and
can be seen to be homomorphisms.

Thus, up to isomorphism, there is a single isometry group of n-dimensional
Euclidean geometry, and we therefore write Isom(En) = Isom(Rn) for this
group, and will abusively speak of isometries of En and their action on points
of En.

Lemma 2.32. Isometries of En map lines to lines.

Proof. Fix a geometry. Let ℓ be a line, A,B be distinct points on ℓ, and let C
be a point between A and B. Let Φ ∈ Isom(En). As A,B,C are collinear, we
have that

d(A,B) = d(A,C) + d(C,B).

As Φ is an isometry,

d(Φ(A),Φ(C)) + d(Φ(C),Φ(B)) = d(A,C) + d(C,B)

= d(A,B)

= d(Φ(A),Φ(B)).

Hence Φ(C) is on the line segment Φ(A)Φ(B).
Conversely, suppose C̃ is on the line segment Φ(A)Φ(B). Analogously C =

Φ−1(C̃) will be a point on the line segment AB. Thus Φ maps the line segment
AB to the line segment Φ(A)Φ(B).

For C not between A and B, we make an analogous argument, instead using
either

d(A,C) = d(A,B) + d(B,C), or d(C,B) = d(C,A) + d(A,B)

as the collinearity condition. Thus, Φ will map the line segment AC (CB
resp.) containing B (A resp.) to the line segment Φ(A)Φ(C) (Φ(C)Φ(B) resp.)
containing Φ(B) (Φ(A) resp.). As these line segments must extend AB and
Φ(A)Φ(B), we conclude Φ maps ℓ to a line.

Corollary 2.33. Let Φ,Ψ ∈ Isom(En) and x, y ∈ En be distinct points. If

Φ(x) = Ψ(x), and Φ(y) = Ψ(y)

then Φ(z) = Ψ(z) for all z on the line between x and y.
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Proof. Let X = Φ(x) and Y = Φ(y). Suppose first that z is on the line segment
xy. From the proof of Lemma 2.32, both Φ(z) and Ψ(z) must lie on the line
segment XY . Without loss of generality, we assume Φ(z) is closer to X than
Ψ(z). By collinearity of the points X,Φ(z),Ψ(z), Y , we must have

d(x, y) = d(X,Y ) = d(X,Φ(z)) + d(Φ(z),Ψ(z)) + d(Ψ(z), Y )

= d(Φ(x),Φ(z) + d(Φ(z),Ψ(z)) + d(Ψ(z),Ψ(y))

= d(x, z) + d(Φ(z),Ψ(z)) + d(z, y)

= d(x, y) + d(Φ(z),Ψ(z))

and so d(Φ(z),Ψ(z)) = 0. Hence Φ(z) = Ψ(z). A similar argument holds for z
not between x and y, and the claim follows.

This says that if two isometries agree on a pair of points, they agree on all
points between them. We can in fact extend this to show that an isometry is
entirely determined by the image of three (generic) points in two dimensions.

Theorem 2.34. If Φ,Ψ ∈ Isom(E2) agree on 3 non-collinear points, they are
equal.

Proof. Let x, y, z be the vertices of a non-degenerate triangle such that Φ and Ψ
agree on x, y, z. By Corollary 2.33, Φ and Ψ agree on the edges of the triangle
and their extensions. Pick a point p not contained in one of the triangle edges.
As x, y, z are not collinear, there exists a line through p intersecting two distinct
sides of the triangle, extended appropriately - for example, a line through p in the
plane defined by x, y, z parallel to one of the edges. Without loss of generality,
we assume this line intersects the lines xy and xz, extended appropriately, in
the points u and v respectively. As the isometries agree on the edges, we have

Φ(u) = Ψ(u), and Φ(v) = Ψ(v).

Hence Φ and Ψ agree on all points on the line between u and v. In particular
Φ(p) = Φ(v). Hence they agree everywhere.

Corollary 2.35. If Φ ∈ Isom(E2) fixes three non-collinear points, it fixes all
points.

Let us now prove our examples of isometries are indeed isometries.

Lemma 2.36. Translations, and multiplication by A ∈ On(R) define isometries
of En.

Proof. It is enough to show these define isometries of Rn. A translation Tv(x) =
x+ v is clearly an isometry, as it has an inverse T−1

v (y) = y − v, and

d(Tv(x), Tv(y)) = ∥Tv(x)− Tv(y)∥ = (∥x+ v − y − v∥ = ∥x− y∥ = d(x, y).
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For a matrix A ∈ On(R), we note that it is invertible by definition and

d(Ax,Ay)2 = ∥Ax−Ay∥2 = ∥A(x− y)∥2

= ⟨A(x− y), A(x− y)⟩
= ⟨ATA(x− y), x− y⟩
= ⟨x− y, x− y⟩ = ∥x− y∥2 = d(x, y)2

Translations, and multiplication by orthogonal matrices (and their compo-
sitions) are examples of affine transformations.

Definition 2.37. A map f : Rn → Rn is called an affine transformation if
f(x) = Ax+ v for some A ∈ GLn(R) and v ∈ Rn.

Exercise 2.38. Show that the set of affine transformations forms a group under
composition.

Affine transformations are usually not linear, but can be classified by their
linear-ish behaviour.

Lemma 2.39. For a bijection F : Rn → Rn, the following are equivalent:

1. F is an affine transformation

2. F (ax + by) − F (0) = a(F (x) − F (0)) + b(F (y) − F (0)) for all a, b ∈ R,
x, y ∈ Rn.

3. F ((1− λ)x+ λy) = (1− λ)F (x) + λF (y) for all λ ∈ R, x, y ∈ Rn.

Proof. Assume 1) holds. The F (x) = Ax+ v for some A and v. Hence

F (ax+ by)− F (0) = A(ax+ by) + v −A(0)− v

= a(Ax) + b(Ay)

= a(Ax+ v − v) + b(Ay + v − y) = a(F (x)− F (0)) + b(F (y)− F (0)).

Therefore 2) holds.
Assume 2) holds. Then

F ((1− λ)x+ λy) = F (0) + (1− λ)(F (x)− F (0)) + λ(F (y)− F (0))

= F (0) + (1− λ)F (x) + λF (y)− F (0)

= (1− λ)F (x) + λF (y).

Therefore 3) holds.
Assume 3) holds. Let v = F (0). It would suffice to show that the map

G(x) := F (x)− F (0)
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is a linear map, as it is clearly invertible if F is. We first note that

G(λx) = F (λx+ (1− λ)0)− F (0)

= λF (x) + (1− λ)F (0)− F (0)

= λ (F (x)− F (0)) = λG(x)

for all λ ∈ R. Next note that

G(x+ y) = F (x+ y)− F (0)

= F

(
1

2
(2x) +

1

2
(2y)

)
− F (0)

=
1

2
F (2x) +

1

2
F (2y)− F (0)

=
1

2
(F (2x)− F (0) + F (2y)− F (0))

=
1

2
(G(2x) +G(2y)) = G(x) +G(y).

Hence G is linear, as needed.

With this description of affine transformations, we can accurately classify all
isometries of En.

Theorem 2.40. The isometries of En are exactly the affine transformations
whose matrix part lies in On(R).

Proof. We have already seen that all affine transformations with orthogonal
matrix part are isometries, so it suffices to show the opposite inclusion. By
Lemma 2.39, it suffices to show that, for any isometry F ∈ Isom(Rn), we have

F ((1− λ)x+ λy) = (1− λ)F (x) + λF (y)

for all λ ∈ R, x, y ∈ Rn. If x = y, this is trivial. Similarly, if λ = 0 or λ = 1.
Otherwise, let z = (1−λ)x+ λy. If 0 < λ < 1, then z is on the line segment xy
and so, from the proof of Lemma 2.32, F (z) is on the line segment F (x)F (y).
Hence, there exists 0 < µ < 1 such that

F (z) = (1− µ)F (x) + µF (y).

We can compute
∥x− z∥ = ∥λx− λy∥ = λ∥x− y∥

and
∥F (x)− F (z)∥ = ∥µF (x)− µF (y)∥ = µ∥F (x)− F (y)∥.

As F is an isometry,

∥F (x)− F (z)∥ = ∥x− z∥, and ∥F (x)− F (y)∥ = ∥x− y∥.
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Hence λ = µ, and

F ((1− λ)x+ λy) = (1− λ)F (x) + λF (y)

If λ > 1, we instead write

y =
1

λ
z +

(
1− 1

λ

)
x

to consider y as on the line segment xz and repeat the argument. Similarly, if
λ < 0, we consider x on the line segment yz with

x =

(
1− −λ

1− λ

)
z +

(
−λ

1− λ

)
y.

Hence F is affine - F (x) = Ax+ v. As F is an isometry, and translation by v is
an isometry, the map

x 7→ Ax

is an isometry. Hence

⟨Ax,Ay⟩ = 1

4

(
∥A(x+ y)∥2 − ∥A(x− y)∥2

)
=

1

4

(
∥x+ y∥2 − ∥x− y∥2

)
= ⟨x, y⟩

for all x, y ∈ Rn. We therefore have that

⟨ATAx, y⟩ = ⟨Ax,Ay⟩ = ⟨x, y⟩

for all x, y ∈ Rn. This implies ATA = I, and so A ∈ On(R).

Exercise 2.41. Using Theorem 2.40, show that affine lines (or more generally
affine spaces) can be defined in n-dimensional Euclidean space independent of
a choice of affine co-ordinate system. It suffices to show that the image of an
affine line/space under an isometry of Isom(Rn) is an affine line/space.

In two and three dimensions On(R) describes exactly the set of rotations,
and the set of reflections followed by a rotation. Hence, at least in a visualisable
number of dimensions, rigid motions are exactly those obtained by reflecting,
rotating, and translating.

Definition 2.42. We call an isometry of En orientation preserving if, as an
affine transformation Ax + b, det(A) > 0. Otherwise, it is called orientation
reversing.

Remark 2.43. Recall that det(A) = ±1 for all orthogonal matrices, so really
we say a transformation is orientation preserving if its determinant is 1, and
orientation reversing if its determinant is −1.

Example 2.44. Some examples of planar isometries and their effects on ori-
entation include:
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• Translations are orientation preserving.

• Rotations around a point in the plane are orientation preserving.

• If we define reflection in a line ℓ as follows, we obtain an orientation
reversing isometry:

– If p is on ℓ, a reflection maps p to p,

– If p is not on ℓ, construct a line ℓ̃ through p perpendicular to ℓ,
intersecting ℓ at q. Then p is mapped to the unique other point p̃ on
ℓ̃ such that d(p, q) = d(p̃, q).

Exercise 2.45. It is not immediately obvious that reflection, as defined, is an
isometry. By constructing some congruent triangles, show that it is.

Reflections, and their generalisations to higher dimensions, form an impor-
tant class of isometries. They are examples of what are called involutions:
function f : X → X such that f(f(x)) = x for all x ∈ X. We will also see that
every isometry can be expressed in terms of reflections.

Lemma 2.46. Let ABC be a non-degenerate triangle in R2, Φ ∈ Isom(R2), and
let DEF = Φ(ABC) be the image of the triangle. Then there is a set of three
isometries r1, r2, r3 ∈ Isom(R2), each of which is a reflection or the identity,
such that

r3r2r1(ABC) = DEF

Theorem 2.47. The group Isom(E2) is generated by reflections.

Proof. It is enough to show it for Isom(R2). Let f ∈ Isom(R2), and pick any
non-degenerate ABC. Then, by Lemma 2.46, we can find reflection or identity
maps r1, r2, r3 ∈ Isom(R2) such that

f(A) = r3r2r1(A), f(B) = r3r2r1(B), f(C) = r3r2r1(C).

Hence, by Theorem 2.34, f = r3r2r1. Thus every isometry can be expressed in
terms of at most three reflections.

Remark 2.48. This implies that to show that some geometry concept, such as
an ellipse, can be defined in any 2-dimensional Euclidean space, it is enough to
show that reflections act appropriately on it e.g. the reflection of an ellipse in
any line is still an ellipse, so ellipses are a purely “geometric” idea.

Remark 2.49. Theorem 2.47 extends to Isom(En), with every isometry ex-
pressible in terms of at most (n+ 1) reflections in a codimension 1 hyperplane.
Note also that none of the geometry involved used any notion of parallel lines,
so this generation property holds in any absolute geometry on Rn.

Example 2.50. How could we write the translation Tv(x) = x+ v in terms of
reflections? Consider the triangle

A = 0, B =
1

2
v,
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and C any other point on the line ℓ1 perpendicular to AB through B. We can
write C = 1

2v + w with ⟨v, w⟩ = 0. As Tv(A) = v, we take r1 to be reflection in
the line ℓ1:

r1(A) = v, r1(B) = B, r1(C) = C.

The translations of B is B′ = Tv(B) = 3
2v. If we take r2 to be the reflection in

the line ℓ2 perpendicular to BB′, through the midpoint v, we find

r2r1(A) = v, ; r2r1(B) =
3

2
v, r2r1(C) =???

As ℓ2 is parallel to ℓ1, r2r1(C)) = r2(C) is a point on the line perpendicular to ℓ1
through C. This line is parallel to AB, and so by a simple rectangle argument,
we must have r2(C) = 3

2v + w = Tv(C). Hence Tv = r2r1.

We round out our discussion of analytic Euclidean geometry with a neat
result, proved using both analytic and synthetic geometry for comparison.

Definition 2.51. Given a line with an orientation, we define the signed length
of the segment between two points A,B on this line by |AB| is given by the
distance if B is on the positive side of A with respect to the orientation, or by
the negative of the distance if B is on the negative side of A

Theorem 2.52 (Ceva’s Theorem). Given a triangle ABC and a point O not
on the sides, let D,E, F be the intersections of (extensions of) AO, BO, CO
with BC, AC, AB respectively. Then (even as signed lengths)

|BD|
|DC|

|CE|
|EA|

|AF |
|FB|

= 1.

Proof. We can assume we are working in R2, and that O is the origin by transla-
tion. Hence A,B,C,D,E, F are given by vectors a, b, c, d, e, f . By construction,
d lies on the line {ta | t ∈ R} and the line

{(1− λ)b+ λc | λ ∈ R}

Hence
d = tda = b+ λd(c− b)

for some td, λd ∈ R satisfying this equality. We then have that

|BD| = ∥b− d∥ = |λd|∥c− b∥,
|DC| = ∥c− d∥ = |(1− λd)∥c− b∥,

and hence
|BD|
|DC|

=

∣∣∣∣ λd

1− λd

∣∣∣∣ .
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Similarly,

e = teb = c+ λe(a− c),
|CE|
|EA|

=

∣∣∣∣ λe

1− λe

∣∣∣∣
f = tfc = a+ λe(b− a),

|AF |
|FB|

=

∣∣∣∣ λf

1− λf

∣∣∣∣
Let us now try to eliminate b from our simultaneous vector equations. We find

tf
λf

c− 1− λf

λf
a = b =

−λd

1− λd
c+

td
1− λd

a.

As our triangle is non-degenerate, a and c are linearly independent, and so we
can equate coefficients:

tf
λf

= − λd

1− λd
, −1− λf

λf
=

td
1− λd

,

the second of which can be rearranged to give

λd

td
=

−λdλf

(1− λd)(1− λf )
.

Similarly eliminating c leads to

td
λd

= − λe

1− λe
.

Thus
λdλeλf

(1− λd)(1− λe)(1− λf )
=

−td
λd

× −λd

t+ d
= 1.

The absolute value of the left hand side is precisely the product

|BD|
|DC|

|CE|
|EA|

|AF |
|FB|

and so the result follows. In fact, it holds for signed lengths, as the equality
holds without absolute values.

In the analytic proof, the fact that Ceva’s theorem holds for signed lengths
is a simple consequence of the proof method For the synthetic proof, it is also
built into the proof, arising from the two the cases of O inside the triangle and
O outside the triangle simultaneously

Proof. We first note that, if O is inside the triangle, all the signed lengths are
positive, which if O is outside the triangle, there will be an even number of
negative lengths, so the signs will cancel. Thus, the claim will hold for signed
lengths if it holds for unsigned lengths.
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Let △ABC| denote the area of the triangle ABC. Note that COD and
BOD have a common perpendicular height h to the bases CD and BD, and so

|△BOD|
△COD|

=
1
2 |BD|h
1
2 |CD|h

=
|BD|
|DC|

.

Similarly
|△BAD|
|△CAD|

=
||BD|
|DC|

.

We have that

|△AOB| = |△BAD| − |△BOD| = |BD|
|DC|

(|△CAD| − |△COD|)

=
|BD|
|DC|

|△COA|.

Hence
|△AOB|
|△COA|

= |BD||DC.

Similarly

|△COA|
|△BOC|

= |AF ||FB, and
|△BOC|
|△AOB|

= |CE||EA.

Hence

|BD|
|DC|

|CE|
|EA|

|AF |
|FB|

= [
|△AOB||△BOC||△COA|
|△COA||△AOB||△BOC|

= 1
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3 Polygons and triangulations

Definition 3.1. A polygon P is a finite collection of (at least three) points V (P )
in the plane, called vertices, and straight lines E(P ), called edges such that

• The endpoints of each edge are vertices. We call say the endpoints of an
edge are adjacent,

• Each vertex is contained in exactly two edges,

• No two edges intersect outside of a vertex,

• Given edges e1, e2 with endpoints {v1, v2} and {v2, v3} respectively, v1, v2, v3
are not collinear,

• All vertices are connected: given v, w ∈ V (P ), there exists a sequence of
edges e1, . . . , en ∈ E(P ) such that ei, ei+1 share a common vertex, v is an
endpoint of e1 and w is an endpoint of en

We call a polygon with n vertices an n-gon.

Remark 3.2. It is convenient to identify an edge e with its endpoint v−w. With
this notation, we can given the connected condition as there exists a sequence
of vertices v, v1, . . . , vn, w such that v − v1, v1 − v2, . . . , vn − w are edges of P .
Also note that a polygon has an equal number of edges as vertices.

Fact 3.3. A polygon P bounds a set I(P ) in the plane, called the interior. We
will write

P = I(P ) ∪ E(P ) ∪ V (P )

when we want to refer to the closed figure bounded by the polygon.

Example 3.4. Here are some examples of polygons and non-polygons
Use your imagination for now

The simplest example of a polygon is a triangle, and by breaking a polygon
up into triangles, we can reduce many mathematical questions to questions
about triangles.

Definition 3.5. A triangulation T of a polygon P is a collection of triangles
such that

•
⋃

T∈T V (T ) ⊇ V (P ),

•
⋃

T∈T E(T ) ⊇ E(P ),

•
⋃

T∈T T = P ,

• For any distinct T1, T2 ∈ T , I(T1) ∩ I(T2) = ∅.

We call a triangulation strong if⋃
T∈T

V (T ) = V (P )

29



Example 3.6. Here are some examples of triangulations. All except the second
are strong.

Use your imagination for now

Remark 3.7. To cut down on notation, we will occasionally use V (T ) to refer
to the union of all vertices in the triangulation, E(T ) for the union of all edges
in the triangulation, etc.

To reduce to studying triangles, we need to be certain that a triangulation
always exists, and ideally how to construct one. We give two methods to do so:
one is mathematically convenient, while the other is more practical.

Definition 3.8. A diagonal of a polygon is a straight line d connecting two
non-adjacent vertices such that d is contained entirely within I(P ) (other than
its endpoints on the boundary of P ).

By taking a diagonal of a polygon, we dissect in into two polygons with
fewer sides. Assuming we can find a diagonal, we can therefore take iterated
diagonals to construct a triangulation. Unfortunately, we cannot just take two
non-adjacent vertices at random, and need to put a bit of though into finding a
diagonal.

Lemma 3.9. Every polygon with at least 4 vertices has a diagonal.

Proof. We first want to find a vertex with an interior angle less than π. Fix
an orientation of the plane, and pick a leftmost vertex v. This has neighbours
u and v. At least one of u or w is strictly to the right of v, as v is leftmost
and u, v, w are not collinear. Hence ∠uvw < π. If u − w forms a diagonal, we
are done. Otherwise the boundary of P must cross to the left of u− w, and so
there is a vertex of P in the triangle uvw. Let z be the leftmost such vertex.
We claim v − z is a diagonal. If not, the boundary of P must cross to the left
of v − z, and so there is a vertex in the triangle vzw ⊂ uvw, contradicting the
leftmost-ness of z

Theorem 3.10. Every polygon P with n ≥ 3 vertices has a strong triangulation
into n− 2 triangles.

Proof. We induct on the number of vertices. For n = 3, P is a triangle, and so
we are done. Now suppose a triangulation exists for all polygons with k vertices
for 3 ≤ k < n, and let P be a polygon with n vertices. Then P has a diagonal,
with separates P into an i-gon and a j-gon, with i + j = n + 2. By induction,
these admit strong triangulations into i−2 and j−2 triangles respectively. This
gives a strong triangulation of P into i+ j − 4 = n− 2 triangles.

This guarantees the existences of a triangulation, but is an inefficient way
to construct one. A more constructive approach arises via ear clipping.

Definition 3.11. An ear of a polygon P is a set of 3 consecutive vertices u, v, w
such that u − w is a diagonal of P . We say two ears overlap if the triangles
they define intersect in their interiors.
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Lemma 3.12. Every polygon with n ≥ 4 vertices has two non-overlapping ears.

Proof. P has a diagonal and the diagonal splits P into two polygons P1, P2¿ If
n = 4, both are triangles and we are done. If n > 4, then one of the polygons has
at least 4 vertices, and we can apply induction to conclude such ears exist.

We can build a strong triangulation by finding an ear of P , “clipping” it
off, and repeating the process with our new, smaller polygon. This is much
faster than just taking random diagonals. Algorithms for finding triangulations
based around diagonals have O(n4) runtimes, which ear-clipping algorithms
have O(n2) runtimes. Neither are mathematically optimal, with most commonly
used algorithms having a runtime of O(n log n). There is even an algorithm
due to Chazelle that has a linear runtime, though it is too complicated to be
implemented in a practical way.

Exercise 3.13. In general, triangulations are not unique. Start with different
ears/diagonals, and you will end up with different triangles. Show there exists
a polygon P with a unique strong triangulation into n − 2 triangles for every
n ≥ 3

A neat application of triangulations is the Art Gallery Problem: in a gallery,
what is the minimum number of stationary rotating guards needed to watch the
whole gallery? While we cannot answer this in general, we can give a good
upper bound, at least for galleries with no central pillars.

To do so, we reformulate the problem geometrically. We say a set of points
S in a polygon P is a guard set for S if, for every p ∈ I(P ), there is an sp ∈ S
such that the line sp − p is contained in P . The Art Gallery Problem asks for
the minimum size of S. We will give an upper bound of

⌊
n
3

⌋
vertices.

To prove this, we need a short combinatorial lemma about colours and
colourings of triangulations.

Lemma 3.14. Given a polygon P with strong triangulation T , we can always
colour the vertices of the triangles with 3 colours such that no two vertices of
the same colour are endpoints of an edge.

Proof. We induct on n. If n = 3, finding such a colouring is trivial. If n > 3,
then we can find a diagonal x− y of the strong triangulation cutting P into two
polygons P1, P2 with strictly fewer vertices and induced strong triangulations.
By induction, each of these admits such a colouring. In particular, x and y
will have different colours in P1, and x and y will have different colours in P2.
By renaming colours in P2, we can assume that x has the same colour in both
P1 and P2, and y has the same colour in P1 and P2. Thus we can merge our
colourings to obtain a colouring of T as needed.

Remark 3.15. This only holds for strong triangulations. In general, you need
4 colours - though it is hard to show that you only need 4.

Theorem 3.16. For a polygon P with n vertices, there exists a guard set of⌊
n
3

⌋
vertices.
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Proof. Let T be a strong triangulation of P and colour the vertices with red,
blue, and green as in Lemma 3.14. Of these three colours, one can appear on
at most

⌊
n
3

⌋
vertices. Suppose it is red. Then, any point of P is in a triangle

with a red vertex, and is hence guarded by this red vertex.

Example 3.17. The accompanying example was not in a well guarded gallery,
and will need to be recovered from those holding it for ransom.

3.1 Lattice polygons

A particularly nice class of polygons are those whose vertices have integer co-
ordinates (for some affine coordinate system). In particular, computations of
perimeters reduce to dealing with right angled triangles, and computations of
area reduce to counting.

Definition 3.18. A plane lattice is a discrete subset Λ ⊂ R2 defined by

Λ = {mv1 + nv2 | m,n ∈ Z2}

for v1, v2 ∈ R2 a pair of linearly independent vectors.

The standard lattice in R2 is Z2 ⊂ R2. For all that follows, we will fix
Λ = Z2, though all essentially all the arguments will work for an arbitrary
lattice. The resulting formulae may be a bit messier though.

Definition 3.19. We say a polygon P is a lattice polygon if V (P ) ⊂ Λ. Given
a lattice polygon P , we divde the elements of Λ into interior, boundary, and
exterior points

Interior: Elements of Λ contained within I(P ),

Boundary: Elements of Λ contained within V (P ) ∪ E(P ),

Exterior: All other elements of Λ.

We denote by BP and IP the number of boundary and interior points, respec-
tively.

Our next goal will be to show that the area bounded by P is a function of
BP and IP , reducing area computation to counting point. We start by cutting
P into nice triangles.

Definition 3.20. A lattice triangle is called elementary if it has 3 boundary
vertices and no interior vertices. A triangulation of a lattice polygon P is called
elementary if it is made up of elementary triangles.

Example 3.21. Here are some examples of elementary and non-elementary
triangles.

Use your imagination for now

Lemma 3.22. Every elementary triangle has equal area, given by 1
2 for Λ = Z2.
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Proof. Let T be an elementary triangle. We can assume one of the vertices is
(0, 0). Let the other two be

p = av1 + bv2, q = cv1 + dv2.

The area of this triangle is given by half the norm of the cross product:

A =
1

2
∥p× q∥ =

1

2
|ad− bc|∥v1 × v2∥

Hence the claim would follow from ad − bc = ±1. Equivalently, it would be
enough to show that the linear map

v1 7→ p = av1 + bv2, v2 7→ q = cv1 + dv2

is invertible, with inverse given by a matrix with integer entries.
To see this, complete the triangle to a parallelogram P with vertices 0, p, q, p+

q. As T is elementary, then P contains no interior vertices, and exactly 4 bound-
ary vertices. To see this, note that if P had a “problem” vertex mv1+nv2, then
p + q − mv1 − nv2 would be a “problem” vertex for T . The parallelogram P
clearly tiles the plane, and none of these translates can contain a problem ver-
tex. Hence, every element of Λ must be a vertex of a copy of P in the tiling,
and vice-versa:

Λ = {Ap+Bq | A,B ∈ Z}

In particular, there is a linear map whose matrix has integer entries such that

p 7→ v1, q 7→ v2.

Thus, the matrix

(
a b
c d

)
is invertible with inverse with integer entries, and so

has determinant ad− bc = ±1 as needed.

Remark 3.23. To prove the statement about “problem” vertices more rigor-
ously, we note that x ∈ P if and only if

x = λp+ µq, where 0 ≤ λ, µ ≤ 1

while x ∈ T if and only if

x = λp+ µq, where 0 ≤ λ, µ ≤ 1, λ+ µ ≤ 1.

The claim then follows from some algebra.

Lemma 3.24. Every lattice polygon has an elementary triangulation.

Proof. We know there exists a (strong) triangulation T of every polygon P . If
every triangle of T is already elementary, we are done. Otherwise, there is a
triangle with an interior point or an excess boundary point. If it is an interior
point, we use this interior point to divide the triangle into three smaller triangles.
If it is an excess boundary point, we use it to divide the triangle into two smaller
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triangles. This gives a new triangulation with fewer “problem” vertices. We
can repeat the process, splitting triangles and reducing the number of problem
vertices each time. As there were only finitely many problem vertices to begin
with, we must eventually obtain a triangulation with no problem vertices, i.e.
an elementary triangulation.

Thus, if we can figure out how many elementary triangles are in an elemen-
tary triangulation of a polygon P , we can work out its easy very easily!

Lemma 3.25. Let P be a lattice polygon, and T be an elementary triangulation
containing T triangles. Then

1. |V (T )| = BP + IP ,

2. 2|E(T )| = 3T +BP

3. There are T = 2IP +BP − 2 triangles in T .

Proof. 1. Every vertex of the triangulation is either interior to P or on the
boundary.

2. Every triangle contains three edges, and every pair of adjacent boundary
vertices defines a sign edge of a triangle. Thus, the total number of edges,
counted with multiplicity, is 3T+BP ). Every edge of a triangle is contained
in two triangles, or is contained in one triangle and joins two boundary
vertices of P , and so appear twice in this count. Thus

3T +BP = 2|E(T )|.

3. We will induct on T . If T = 1, then P is an elementary triangle and the
claim follows. Now suppose the relationship is true for triangulations of
polygons into T − 1 triangles, and suppose P has a triangulation into T
triangles. Pick a triangle with an edge on the boundary of P .

• If this triangle only has one edge on the boundary of P , we delete it
to obtain a triangulation of a polygon with BP +1 boundary vertices
and IP − 1 interior vertices into T − 1 elementary triangles. By
induction

T − 1 = 2(IP − 1) +BP + 1− 2, ⇒ T = 2IP +BP − 2.

• If this triangle has exactly two edges on the boundary, then we delete
both and their shared vertex to obtain a triangulation of a polygon
with BP − 1 boundary vertices and IP interior vertices into T − 1
triangles. By induction

T − 1 = 2IP + (BP − 1)− 2 ⇒ T = 2IP +BP − 2.

• If this triangle has three edges on the boundary, then P was an
elementary triangle and we have already considered this.
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This leads use to Pick’s theorem for the area of a lattice polygon

Theorem 3.26. Given a lattice polygon P on Λ = Z2, we have

Area(P ) = IP +
BP

2
− 1

Proof. We have an elementary triangulation into 2IP +BP − 2 elementary tri-
angles, each of which as an area of 1

2 , and so the claim follows.

3.2 Polygons with holes and the Euler characteristic

Obviously, we can handle polygons with holes in the middle by comparing the
(full) exterior polygon with the interior polygon, but we can give a bit of a
slicker approach via an invariant called the Euler characteristic. But first, what
is a polygon with a hole in the middle.

Definition 3.27. A polygon with holes P consists of a polygon Pext, called the
exterior boundary, and a number of non-intersecting interior polygons P1, . . . , Pn,
called holes, such that no interior polygon is contained within the interior of an-
other. We write h(P ) = n for the number of holes of P .

Given a polygon with holes, we refer to the boundary of Pext as the exterior
boundary and the boundaries of P1, . . . , Pn are the interior boundaries. The
interior of P is the set

I(P ) = I(Pext) \ (I(P1) ∪ · · · ∪ I(Pn)) .

We can naturally extend many of our results about triangulations and to
polygons with holes, but we have to slightly modify Pick’s formula to count the
number of holes, via the Euler characteristic.

Definition 3.28. Given a polygon with holes P and a triangulation T , we
define the Euler characteristic with respect to T of P by

χT (P ) = |V (T )| − |E(T )|+ |F (T |

where we now write F (T ) for the set of triangles of T . It will now be convenient
to refer to these triangles as faces.

Fact 3.29. For any polygon with holes, the Euler characteristic depends only
on P , not on the triangulation. Specifically

χT (P ) = |V (P )| − |E(P )|+ (1− h(P ))

for all triangulations T . As such, we often just write χ(P ) for this common
value.

Remark 3.30. Proving this can be a worthwhile exercise. An argument could
go as follows:
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1. Extend the Euler characteristic to subdivisions of P into arbitrary polygons
and consider what happens when you merge two faces of a subdivision.

2. Show that, for any two triangulations of P , there is a subdivision S of P
such that every face of S is contained in a triangle of each triangulation.
Hence conclude that χT (P ) is independent of T .

3. Compute χT (P ) for a strong triangulation, but considering how the num-
ber of edges and faces change as you delete diagonals.

With this, we can give a generalisation of Pick’s theorem. This could also be
shown just by subtracting the appropriate areas, but also follows immediately
from taking an elementary triangulation.

Theorem 3.31. Let P be a lattice polygon with holes. Then

Area(P ) = IP +
BP

2
− χ(P ).

Proof. Take an elementary triangulation T of P , with |F (T )| triangles. Then

|F (T )| = χT (P )− |V (T )|+ |E(T )|

= χ(P )−BP − IP +
3|F (T ) +BP

2

Solving this for |F (T )|, we find

Area(P ) =
1

2
|F (T )| = IP +

BP

2
− χ(P ).
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4 Elliptic Geometry

5 Hyperbolic Geometry

6 Projective geometry
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7 Summary of main results
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8 Appendix A: A review of linear algebra over
the reals

Definition 8.1. A (real) vector space is a set V with two operations:

Addition a map + : V × V → V ,

Scalar Multiplication a map ·R× V → V

and a distinguished element 0 ∈ V , satisfying the following

1. (x+ y) + z = x+ (y + z),

2. x+ y = y + x,

3. x+ 0 = x,

4. λ · (x+ y) = λ · x+ λ · y,

5. (λ+ µ) · x = λ · x+ µ · x,

6. λ · (µ · x) = (λµ) · x

7. 0 · x = 0.

We will usually omit the dot in scalar multiplication.

Example 8.2. The main example is Rn, the set of n-tuples of real numbers

x = (x1, . . . , xn)

with componentwise addition and scalar multiplication:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),

λ(x1, . . . , xn) = (λx1, . . . , λxn),

0 = (0, . . . , 0).

Definition 8.3. A basis for V is a minimal set of vectors {v1, . . . , vN} ⊂ V
such that every x ∈ V can be written in the form

x = λ1v1 + · · ·λNvN .

We call N the dimension of V

Example 8.4. The vector space Rn has a basis, called the standard basis, con-
sisting of e1, . . . , en, where ei has a 1 in the ith entry and zeroes elsewhere. As
such, Rn is an n-dimensional vector space.

Definition 8.5. A map T : V → W between vector spaces is called a linear
map (or a homomorphism) if

T (x+ y) = T (x) + T (y)T (λx) = λT (x)

A linear map T with an inverse map T−1 : W → V is called an isomorphism.
If T : V → W is an isomorphism, we say V and W are isomorphic.
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Exercise 8.6. Show that every vector space of dimension n is isomorphic to
Rn.

Fact 8.7. Every linear map T : Rm → Rn can be represented by an (n ×m)-
matrix A, such that

T (x) = Ax

is given by matrix multiplication. As such, we will often omit the brackets when
discussing linear maps.

Definition 8.8. An inner product on a vector space V is a map I : V ×V → R
such that

1. I(λx+ µy, z) = λI(x, z) + µI(y, z) for all x, y, z ∈ V , λ, µ ∈ R,

2. I(z, λx+ µy) = λI(z, x) + µI(z, y) for all x, y, z ∈ V , λ, µ ∈ R,

3. I(x, y) = I(y, x) for all x, y ∈ V ,

4. I(x, x) > 0 for all x ∈ V , x ̸= 0.

These properties are referred to as bilinearity, symmetry, and positive-definiteness
respectively.

Remark 8.9. Note that properties (1) and (3) imply (2), leading to a bit of
redundancy for sake of clarity.

Example 8.10. The standard inner product on Rn (sometimes called the dot
product) is given by

⟨(x1, . . . , xn), (y1, . . . , yn)⟩ = x1y1 + · · ·+ xnyn.

Fact 8.11. Given a matrix A, matrix multiplication interacts with the standard
inner product as follows

⟨x,Ay⟩ = ⟨ATx, y⟩

where AT is the transpose.

Definition 8.12. Given a vector space V with an inner product I, we say
v, w ∈ V are orthogonal if I(v, w) = 0. A set {v1, . . . , vn} is orthonormal if

I(vi, vj) =

{
1 if i = j,

0 otherwise.

Example 8.13. The standard basis of Rn is orthonormal with respect to the
standard inner product.

Definition 8.14. A norm on V is a function ∥ · ∥ : V → R≥0 such that

1. ∥λv∥ = |λ|∥v∥ for all λ ∈ R, v ∈ V ,

2. ∥v∥ = 0 if and only if v = 0,
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3. ∥v + w∥ ≤ ∥v∥+ ∥w∥

Example 8.15. The Euclidean norm on Rn is given by

∥(x1, . . . , xn)∥ =
√
x2
1 + · · ·+ x2

n

which give the (Euclidean) length of the vector x.

Remark 8.16. This inequality is usually called the triangle inequality. By
taking v = a− b and w = b− c, we can rewrite it as

∥a− c∥ ≤ ∥a− b∥+ ∥b− c∥.

If we think of a, b, c as describing the vertices of a triangle ABC, this says

|AC| ≤ |AB|+ |BC|

which is precisely the condition needed to 3 line segments to be able to form a
triangle!

Exercise 8.17. Let V be a vector space with inner product I. Show that

∥x∥ :=
√
I(x, x)

defines a norm on V . Show that for such norms, we have that

∥v + w∥ = ∥v∥+ ∥w∥

if and only if v = 0 or w = λv for some real λ.

Example 8.18. The Euclidean norm on Rn comes from the standard inner
product.

Fact 8.19. A norm ∥·∥ coming from an inner product satisfies the parallelogram
law

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2

Theorem 8.20. Let V be a vector space with norm ∥ · ∥. If the norm satisfies
the parallelogram law, then there exists a unique inner product I on V inducing
∥ · ∥.

Proof. We claim that

I(x, y) :=
1

4

(
∥x+ y∥2 − ∥x− y∥2

)
defines an inner product on V . Symmetry and positive-definiteness are quick to
check, while bilinearity can be derived from the parallelogram law. I induces
the norm

I(x, x) =
1

4
∥2x∥2 = ∥x∥2.
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To see that I is unique, suppose

∥x∥ =
√

J(x, x)

for some inner product J . Then, using bilinearity of J , we find

I(x, y) =
1

4
(J(x+ y, x+ y)− J(x− y, x− y)) = J(x, y).

Thus, the inner product is unique.

9 Appendix B: A review of groups

Definition 9.1. A group is a set G, with a multiplication map G×G → G and
a distinguished identity element e ∈ G such that

• a(bc) = (ab)c for all a, b, c ∈ G,

• ae = ea = a for all a ∈ G,

• For all a ∈ G, there exists a−1 ∈ G such that

aa−1 = a−1a = e

called the inverse.

Example 9.2. The set of integers (Z,+) with addition is a group. The identity
element is 0, and the inverse is the negative.

Example 9.3. The set GLn(R) of invertible (n×n)-matrices with matrix mul-
tiplication is a group. The identity is the identity matrix

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


and inverse given my the matrix inverse. For n = 2, the inverse is given by(

a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

This is called the general linear group.

Example 9.4. The special linear group is a subgroup of GLn(R) given by

SLn(R) = {M ∈ GLn(R) | detM = 1}
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Example 9.5. The orthogonal group is a subgroup of GLn(R) given by

On(R) = {M ∈ GLn(R) | MMT = MTM = I},

the set of matrices whose transpose is the inverse. A simple exercise is to show
that the determinant of every matrix in this group is ±1. Orthogonal matrices
represent a combination of reflections and rotations of Rn

Example 9.6. The special orthogonal group is the intersection of SLn(R) with
On(R), given by

SOn(R) = {M ∈ SLn(R) | MMT = MTM = I}
= {M ∈ On(R) | detM = 1}.

Elements of this group represent rotations of Rn.

Exercise 9.7. Show that

SO2(R) =
{(

cos θ sin θ
− sin θ cos θ

)
| θ ∈ [0, 2π)

}
.

Definition 9.8. A map between groups f : G → H is called a homomorphism
if

f(ab) = f(a)f(b)

for all a, b ∈ G. An invertible is called an isomorphism. If f : G → H is an
isomorphism, we say G and H are isomorphic.
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