
MAU22203/33203 - Analysis in Several Real
Variables

Tutorial Sheet 4

Trinity College Dublin

Course homepage

The use of electronic calculators and computer algebra software is allowed.

Exercise 1 Computing derivatives

i) Using limits, verify that the derivative of f(x, y) = x2 − 18xy + y2 is
equal to the Jacobian at all points (p, q).

ii) Define a map φ : R8 → R4 via matrix multiplication: if

φ(x⃗) = (f1(x⃗), f2(x⃗), f3(x⃗), f4(x⃗))

the components are determined by(
f1(x⃗) f3(x⃗)

f2(⃗2) f4(⃗4)

)
=

(
x1 x3
x2 x4

)(
x5 x7
x6 x8

)
.

Determine (Dφ)x⃗.

iii) Hence show that, viewing (2× 2)-matrices as elements of R4,

(D(AB))t = (DA)tB(t) + A(t)(DB)t

for any differentiable function A,B : R → R4.
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Solution 1

i) The Jacobian at (p, q) is given by

(J f)(p,q) = (2p− 18q, 2q − 18p).

We therefore want to show that

lim
(x,y)→(p,q)

f(x, y)− f(p, q)− (J f)(p,q)((x− p, y − q))

∥(x− p, y − q)∥
= 0

or equivalently

lim
(h,k)→(0,0)

f(p+ h, q + k)− f(p, q)− (J f)(p,q)(h, k)

∥(h, k)∥
= 0.

The numerator is given by

2ph+h2+2qk+k2−18pk−18qh−18hk−(2p−18q)h−(2q−18p)k = h2+k2−18hk

and so we want to show that

lim
(h,k)→(0,0)

h2 + k2√
h2 + k2

− 18
hk√
h2 + k2

= 0.

The first term is equal to
√
h2 + k2, which tends to 0, so it suffices to

show that

−18 lim
(h,k)→(0,0)

hk√
h2 + k2

= 0

or, equivalently

lim
(h,k)→(0,0)

2|hk|√
h2 + k2

= 0.

To see this, not that

(|h| − |k|)2 ≥ 0 ⇐ h2 + k2 ≥ 2|hk|.

Thus, we have that

0 ≤ 2|hk|√
h2 + k2

≤ h2 + k2√
h2 + k2

=
√
h2 + k2

and so, by the squeeze theorem, the limit as (h, k) → (0, 0) is equal to
0, as needed.
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ii) We will compute the Jacobian matrix of

φ(x⃗) =

(
x1x5 + x3x6 x1x7 + x3x8
x2x5 + x4x6 x2x7 + x4x8

)
which turns out to be

(Jφ)x⃗ =


x5 0 x6 0 x1 x3 0 0
0 x5 0 x6 x2 x4 0 0
x7 0 x8 0 0 0 x1 x3
0 x7 0 x8 0 0 x2 x4

 .

This has continuous components everywhere. Thus, φ is differentiable
everywhere with derivative equal to the Jacobian.

iii) By chain rule, the derivative of the function A(t)B(t) = φ(A(t), B(t)) is
given by

(Jφ)(A(t),B(t)

(
(DA)t
(DB)t

)
The derivatives of A and B are given by

(DA)t =


A′

1(t)
A′

2(t)
A′

3(t)
A′

4(t)

 (DB)t =


B′

1(t)
B′

2(t)
B′

3(t)
B′

4(t)


and hence (DAB)t is the vector

B1A
′
1 +B2A

′
3 + A1B

′
1 + A3B

′
2

B1A
′
2 +B2A

′
4 + A2B

′
1 + A4B

′
2

B3A
′
1 +B4A

′
3 + A1B

′
3 + A3B

′
4

B3A
′
2 +B4A

′
4 + A2B

′
3 + A4B

′
4


which we can rewrite as the matrix(

B1A
′
1 +B2A

′
3 + A1B

′
1 + A3B

′
2 B3A

′
1 +B4A

′
3 + A1B

′
3 + A3B

′
4

B1A
′
2 +B2A

′
4 + A2B

′
1 + A4B

′
2 B3A

′
2 +B4A

′
4 + A2B

′
3 + A4B

′
4

)
which is equal to(

A′
1 A′

3

A′
2 A′

4

)(
B1 B3

B2 B4

)
+

(
A1 A3

A2 A4

)(
B′

1 B′
3

B′
2 B′

4

)
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Exercise 2 Inverse Function Theorem

i) Call a continuously differentiable function f : Rm → Rm locally invert-
ible at p⃗ if there exists an open set U ⊂ Rm containing p⃗ such that
f : U → f(U) is a bijection with a continuously differentiable inverse.
Is

f(x, y) =

(
exy

sin(y + x)

)
locally invertible at (0, π)?

ii) Let A be the set of (x, y) ∈ R2 such that f is locally invertible at (x, y).
Is A open, closed, or neither in R2?

Solution 2

i) We first compute the derivative of f via the Jacobian

(D f)(x,y) =

(
yexy xexy

cos(x+ y) cos(x+ y)

)
This has continuous components, so f is continuously differentiable. At
(0, π), this is equal to (

π 0
−1 −1

)
which has determinant −π ̸= 0. Hence, by the inverse function theorem,
f is locally invertible at (0, π).

ii) If f is locally invertible at (x, y), then there exists continuously differ-
entiable µ : f(U) → U such that µ(f(x, y)) for all (x, y) ∈ f(U). Chain
rule tells us that

(Dµ)f(x,y)(D f)(x,y) = I

and so (D f)(x,y) is invertible. The inverse function theorem tells us that
if (D f)(x,y) is invertible, then f is locally invertible. Hence A is the set

{(x, y) | det(D f)(x,y) ̸= 0} = {(x, y) | (y − x)exy cos(x+ y) ̸= 0}

which is open.
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Exercise 3 The implicit function theorem

i) Let
S1 = {(x, y) ∈ R2 | x2 + y2 = 1}.

Show that, for every (x0, y0) ∈ S1, there exists open V ⊂ R2 such that
V ∩ S1 is homeomorphic to an open U ⊂ R.

ii) Show that there exists open V ⊂ R2 such that V ∩ S1 is homeomorphic
to an open interval (a, b) ⊂ R.
Hint: Think about connectedness

iii) Let
A = {(x, y, z) ∈ R3 | x2 + y2 = z2, x+ y + z = 0}.

Show that, for all but finitely many (x, y, z) ∈ A, there exists open
V ⊂ R3 such that V ∩ A is homeomorphic to an open U ⊂ R.

iv) Let f : R2 → R be a continuously differentiable function. Suppose that
for each x ∈ R, there exists y ∈ R such that f(x, y) = 0. Denote this
y by c(x). Suppose further that ∂yf(x, y) ̸= 0 for all (x, y) ∈ R2. Show
that c is differentiable, with derivative

c′(x) = −∂xf(x, c(x))
∂yf(x, c(x)

.

Solution 3

i) By the implicit function theorem, it suffices to show that the derivative
of f(x, y) = x2 + y2 − 1 has rank 1 everywhere.

(D f)(x,y) = (2x 2y)

which clearly has rank at most 1, and can only have rank 0 if x = y = 0,
which is not a point on S1. Thus, the claim holds by the implicit function
theorem.

ii) The homeomorphism ψ : V ∩ S → U induced by the implicit function
theorem will induce a homeomorphism ψ : V ′ ∩ S → ψ(V ′ ∩ S) for
any open V ′ ⊂ V . In particular, we can restrict ψ to the connected
component of V containing (x, y). Since connectedness is preserved by
homeomorphisms, the image must be an open connected set in R, i.e.
an open interval.
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iii) The functions

f1(x, y, z) = x2 + y2 − z2,

f2(x, y, z) = x+ y + z

are continuously differentiable, so we can apply the implicit function
theorem: it suffices to determine where the matrix

J(x, y, z) =

(
2x 2y −2z
1 1 1

)
has rank 2. It cannot have rank 0, and if it has rank 1, then each of
the columns must be a scalar multiple of a common vector v⃗. Since the
second component is 1 in each case, we must have 2x = 2y = −2z, and
so J(x, y, z) has rank 2 unless (x, y, z) = (t, t,−t) for some t ∈ R. If
(x, y, z) ∈ A and (x, y, z) = (t, t,−t), then

t+ t− t = 0 ⇐ t = 0.

Thus, away from (0, 0, 0), the implicit function theorem applies and the
claim follows.

iv) The conditions given in the question imply that the implicit function
theorem applies, with there existing open Vx0 ⊂ R2 containing

(x0, c(x0)) ∈ {(x, y) | f(x, y) = 0} = S

open U ⊂ R, and continuously differentiable gx0 : U → R such that

Vx0 ∩ S = {(x, gx0(x)) | x ∈ U}.

The uniqueness of c implies that c(x) = gx0(x) for every x ∈ U , and that
c is differentiable at x0. Since this is true for every x0 ∈ R, we have that
c is differentiable.

Since f(x, c(x)) = 0 for every x ∈ R, we can apply chain rule to show
that

∂xf(x, c(x)) + ∂yf(x, c(x))c
′(x) = 0

from which the claim follows.
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Exercise 4 The Challenge

Let f : R → R be a continuously differentiable function with |f ′(x)| ≤ c < 1
for all x ∈ R. Define ϕ : R2 → R2 by

ϕ(x, y) = (x+ f(y), y + f(x)).

1. Show that ϕ is continuously differentiable

2. Show the conditions of the inverse function theorem apply, and hence
ϕ has a local inverse µ(p,q) near every point (p, q) ∈ ϕ(R2)

3. Show that ϕ is injective and therefore there exists µ : ϕ(R2) → R2 such
that ϕ(µ(p, q)) = (p, q).

Hint: Suppose otherwise and find a way to use the mean value theorem

4. Show that ϕ(R2) is open and explain why µ must be continuously dif-
ferentiable.

5. Show that ϕ is surjective.

Hint: can you rewrite surjectivity as a fixed point condition, or show
the image is closed?

Solution 4

1. The Jacobian of ϕ is (
1 f ′(y)

f ′(x) 1

)
which has continuous entries, and so ϕ is continuously differentiable.

2. The determinant of the derivative of ϕ is 1 − f ′(x)f ′(y) > 0 as from
the bounds on the derivative. Hence (Dϕ)(x,y) is invertible everywhere,
and the inverse function theorem applies. Thus ϕ has a local inverse in
some open around every point (p, q) ∈ R2.

3. Note that, by the mean value theorem

f(x2)− f(x1)

x2 − x1
= f ′(ξ) ≤ c < 1

7



and so f(x2)− f(x1) < x2 − x1 for all x1 < x2. As such

|f(x)− f(p)| < |x− p|

for all x ̸= p ∈ R. Suppose ϕ(x, y) = ϕ(p, q) with x ̸= p, y ̸= q. Then
we have that

0 = x− p+ f(y)− f(q) and y − q + f(x)− f(p) = 0

and so

|x−p| = |f(y)− f(q)| < |y− q| and |y− q| = |f(x)− f(p)| < |x−p|

which is impossible, as it implies |x− p| < |x− p|. Thus, we must have
x = p or y = q. If either of these hold, then the equalities also imply
the other, so we must have (x, y) = (p, q). Hence ϕ is injective.

Therefore, there exists µ : ϕ(R2) → R2 such that ϕ(µ(p, q)) = (p, q).

4. By the inverse function theorem, around every (p, q) ∈ ϕ(R2), there ex-
ists an open set U(p,q) and a continuously differentiable function µ(p,q) :
U(p,q) → R2 such that ϕ(µ(p,q)(x, y)) = (x, y). Hence U(p,q) ⊂ ϕ(R2),
and we can write

ϕ(R2) ⊂
⋂

(p,q)∈ϕ(R2)

U(p,q) ⊂ ϕ(R2).

Therefore the image is equal to this union and hence is open.

Furthermore, by the injectivity of ϕ, there can by at most one function
η : U(p,q) → R2 such that ϕ(η(x, y)) = (x, y). As both µ(p,q) and µ|U(p,q)

satisfy this condition, they must be equal. Thus µ|U(p,q)
is continuous

differentiable. As the U(p,q) cover ϕ(R2), and continuous differentia-
bility is a local condition, this implies µ is continuously differentiable
everywhere.

5. We give two arguments. For the first, fix (p, q) ∈ R2 and note that
(p, q) ∈ ϕ(R2) is equivalent to the function

Φ(x, y) = (p− f(y), q − f(x))
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having a fixed point somewhere in R2. As R2 is closed, it is enough to
show Φ is a contraction:

∥Φ(x, y)− Φ(a, b)∥ = ∥(f(b)− f(y), f(a)− f(x))∥
=

√
(f(b)− f(y)2 + (f(a)− f(x))2

≤
√
c2(y − b)2 + c2(a− x)2 = c∥(x, y)− (a, b)∥.

Thus a fixed point exists, and so ϕ is surjective. Hence, ϕ is a bijective
continuously differentiable map with continuously differentiable inverse
(a diffeomorphism!) from R2 to itself.

For the second argument, we want to show ϕ(R2) is closed. Let z⃗ be
a limit point of ϕ(R2). There is a sequence {z⃗n} ⊂ ϕ(R2) such that
limn→∞ z⃗n = z⃗. Letting x⃗n = µ(z⃗n) we obtain a sequence in R2 which
must converge to a point x⃗ ∈ R2 by continuity of µ. Then by continuity
of ϕ, z⃗ = ϕ(x⃗), so z⃗ ∈ ϕ(R2). Hence ϕ(R2) contains all its limits points
and is therefore closed. But we have already showed that it is open.
The only non-empty subset of R2 that is both open and closed is R2

itself, so ϕ must be surjective.
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