

MAU22203/33203 - Analysis in Several Real Variables

Tutorial Sheet 4

Trinity College Dublin

Course homepage

The use of electronic calculators and computer algebra software is allowed.

Exercise 1 Computing derivatives

- i) Using limits, verify that the derivative of $f(x, y) = x^2 - 18xy + y^2$ is equal to the Jacobian at all points (p, q) .
- ii) Define a map $\varphi : \mathbb{R}^8 \rightarrow \mathbb{R}^4$ via matrix multiplication: if

$$\varphi(\vec{x}) = (f_1(\vec{x}), f_2(\vec{x}), f_3(\vec{x}), f_4(\vec{x}))$$

the components are determined by

$$\begin{pmatrix} f_1(\vec{x}) & f_3(\vec{x}) \\ f_2(\vec{x}) & f_4(\vec{x}) \end{pmatrix} = \begin{pmatrix} x_1 & x_3 \\ x_2 & x_4 \end{pmatrix} \begin{pmatrix} x_5 & x_7 \\ x_6 & x_8 \end{pmatrix}.$$

Determine $(D\varphi)_{\vec{x}}$.

- iii) Hence show that, viewing (2×2) -matrices as elements of \mathbb{R}^4 ,

$$(D(AB))_t = (D A)_t B(t) + A(t)(D B)_t$$

for any differentiable function $A, B : \mathbb{R} \rightarrow \mathbb{R}^4$.

Solution 1

i) The Jacobian at (p, q) is given by

$$(\mathbf{J} f)_{(p,q)} = (2p - 18q, 2q - 18p).$$

We therefore want to show that

$$\lim_{(x,y) \rightarrow (p,q)} \frac{f(x,y) - f(p,q) - (\mathbf{J} f)_{(p,q)}((x-p, y-q))}{\|(x-p, y-q)\|} = 0$$

or equivalently

$$\lim_{(h,k) \rightarrow (0,0)} \frac{f(p+h, q+k) - f(p,q) - (\mathbf{J} f)_{(p,q)}(h, k)}{\|(h, k)\|} = 0.$$

The numerator is given by

$$2ph + h^2 + 2qk + k^2 - 18pk - 18qh - 18hk - (2p - 18q)h - (2q - 18p)k = h^2 + k^2 - 18hk$$

and so we want to show that

$$\lim_{(h,k) \rightarrow (0,0)} \frac{h^2 + k^2}{\sqrt{h^2 + k^2}} - 18 \frac{hk}{\sqrt{h^2 + k^2}} = 0.$$

The first term is equal to $\sqrt{h^2 + k^2}$, which tends to 0, so it suffices to show that

$$-18 \lim_{(h,k) \rightarrow (0,0)} \frac{hk}{\sqrt{h^2 + k^2}} = 0$$

or, equivalently

$$\lim_{(h,k) \rightarrow (0,0)} \frac{2|hk|}{\sqrt{h^2 + k^2}} = 0.$$

To see this, note that

$$(|h| - |k|)^2 \geq 0 \iff h^2 + k^2 \geq 2|hk|.$$

Thus, we have that

$$0 \leq \frac{2|hk|}{\sqrt{h^2 + k^2}} \leq \frac{h^2 + k^2}{\sqrt{h^2 + k^2}} = \sqrt{h^2 + k^2}$$

and so, by the squeeze theorem, the limit as $(h, k) \rightarrow (0, 0)$ is equal to 0, as needed.

ii) We will compute the Jacobian matrix of

$$\varphi(\vec{x}) = \begin{pmatrix} x_1x_5 + x_3x_6 & x_1x_7 + x_3x_8 \\ x_2x_5 + x_4x_6 & x_2x_7 + x_4x_8 \end{pmatrix}$$

which turns out to be

$$(\mathbf{J} \varphi)_{\vec{x}} = \begin{pmatrix} x_5 & 0 & x_6 & 0 & x_1 & x_3 & 0 & 0 \\ 0 & x_5 & 0 & x_6 & x_2 & x_4 & 0 & 0 \\ x_7 & 0 & x_8 & 0 & 0 & 0 & x_1 & x_3 \\ 0 & x_7 & 0 & x_8 & 0 & 0 & x_2 & x_4 \end{pmatrix}.$$

This has continuous components everywhere. Thus, φ is differentiable everywhere with derivative equal to the Jacobian.

iii) By chain rule, the derivative of the function $A(t)B(t) = \varphi(A(t), B(t))$ is given by

$$(\mathbf{J} \varphi)_{(A(t), B(t))} \begin{pmatrix} (\mathbf{D} A)_t \\ (\mathbf{D} B)_t \end{pmatrix}$$

The derivatives of A and B are given by

$$(\mathbf{D} A)_t = \begin{pmatrix} A'_1(t) \\ A'_2(t) \\ A'_3(t) \\ A'_4(t) \end{pmatrix} \quad (\mathbf{D} B)_t = \begin{pmatrix} B'_1(t) \\ B'_2(t) \\ B'_3(t) \\ B'_4(t) \end{pmatrix}$$

and hence $(\mathbf{D} AB)_t$ is the vector

$$\begin{pmatrix} B_1A'_1 + B_2A'_3 + A_1B'_1 + A_3B'_2 \\ B_1A'_2 + B_2A'_4 + A_2B'_1 + A_4B'_2 \\ B_3A'_1 + B_4A'_3 + A_1B'_3 + A_3B'_4 \\ B_3A'_2 + B_4A'_4 + A_2B'_3 + A_4B'_4 \end{pmatrix}$$

which we can rewrite as the matrix

$$\begin{pmatrix} B_1A'_1 + B_2A'_3 + A_1B'_1 + A_3B'_2 & B_3A'_1 + B_4A'_3 + A_1B'_3 + A_3B'_4 \\ B_1A'_2 + B_2A'_4 + A_2B'_1 + A_4B'_2 & B_3A'_2 + B_4A'_4 + A_2B'_3 + A_4B'_4 \end{pmatrix}$$

which is equal to

$$\begin{pmatrix} A'_1 & A'_3 \\ A'_2 & A'_4 \end{pmatrix} \begin{pmatrix} B_1 & B_3 \\ B_2 & B_4 \end{pmatrix} + \begin{pmatrix} A_1 & A_3 \\ A_2 & A_4 \end{pmatrix} \begin{pmatrix} B'_1 & B'_3 \\ B'_2 & B'_4 \end{pmatrix}$$

Exercise 2 Inverse Function Theorem

i) Call a continuously differentiable function $f : \mathbb{R}^m \rightarrow \mathbb{R}^m$ locally invertible at \vec{p} if there exists an open set $U \subset \mathbb{R}^m$ containing \vec{p} such that $f : U \rightarrow f(U)$ is a bijection with a continuously differentiable inverse. Is

$$f(x, y) = \begin{pmatrix} e^{xy} \\ \sin(y + x) \end{pmatrix}$$

locally invertible at $(0, \pi)$?

ii) Let A be the set of $(x, y) \in \mathbb{R}^2$ such that f is locally invertible at (x, y) . Is A open, closed, or neither in \mathbb{R}^2 ?

Solution 2

i) We first compute the derivative of f via the Jacobian

$$(\mathbf{D} f)_{(x,y)} = \begin{pmatrix} ye^{xy} & xe^{xy} \\ \cos(x + y) & \cos(x + y) \end{pmatrix}$$

This has continuous components, so f is continuously differentiable. At $(0, \pi)$, this is equal to

$$\begin{pmatrix} \pi & 0 \\ -1 & -1 \end{pmatrix}$$

which has determinant $-\pi \neq 0$. Hence, by the inverse function theorem, f is locally invertible at $(0, \pi)$.

ii) If f is locally invertible at (x, y) , then there exists continuously differentiable $\mu : f(U) \rightarrow U$ such that $\mu(f(x, y)) = (x, y)$ for all $(x, y) \in f(U)$. Chain rule tells us that

$$(\mathbf{D} \mu)_{f(x,y)} (\mathbf{D} f)_{(x,y)} = I$$

and so $(\mathbf{D} f)_{(x,y)}$ is invertible. The inverse function theorem tells us that if $(\mathbf{D} f)_{(x,y)}$ is invertible, then f is locally invertible. Hence A is the set

$$\{(x, y) \mid \det(\mathbf{D} f)_{(x,y)} \neq 0\} = \{(x, y) \mid (y - x)e^{xy} \cos(x + y) \neq 0\}$$

which is open.

Exercise 3 *The implicit function theorem*

i) Let

$$S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$$

Show that, for every $(x_0, y_0) \in S^1$, there exists open $V \subset \mathbb{R}^2$ such that $V \cap S^1$ is homeomorphic to an open $U \subset \mathbb{R}$.

ii) Show that there exists open $V \subset \mathbb{R}^2$ such that $V \cap S^1$ is homeomorphic to an open interval $(a, b) \subset \mathbb{R}$.

Hint: Think about connectedness

iii) Let

$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2, x + y + z = 0\}.$$

Show that, for all but finitely many $(x, y, z) \in A$, there exists open $V \subset \mathbb{R}^3$ such that $V \cap A$ is homeomorphic to an open $U \subset \mathbb{R}$.

iv) Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a continuously differentiable function. Suppose that for each $x \in \mathbb{R}$, there exists $y \in \mathbb{R}$ such that $f(x, y) = 0$. Denote this y by $c(x)$. Suppose further that $\partial_y f(x, y) \neq 0$ for all $(x, y) \in \mathbb{R}^2$. Show that c is differentiable, with derivative

$$c'(x) = -\frac{\partial_x f(x, c(x))}{\partial_y f(x, c(x))}.$$

Solution 3

i) By the implicit function theorem, it suffices to show that the derivative of $f(x, y) = x^2 + y^2 - 1$ has rank 1 everywhere.

$$(\mathbf{D} f)_{(x,y)} = (2x \ 2y)$$

which clearly has rank at most 1, and can only have rank 0 if $x = y = 0$, which is not a point on S^1 . Thus, the claim holds by the implicit function theorem.

ii) The homeomorphism $\psi : V \cap S \rightarrow U$ induced by the implicit function theorem will induce a homeomorphism $\psi : V' \cap S \rightarrow \psi(V' \cap S)$ for any open $V' \subset V$. In particular, we can restrict ψ to the connected component of V containing (x, y) . Since connectedness is preserved by homeomorphisms, the image must be an open connected set in \mathbb{R} , i.e. an open interval.

iii) The functions

$$\begin{aligned} f_1(x, y, z) &= x^2 + y^2 - z^2, \\ f_2(x, y, z) &= x + y + z \end{aligned}$$

are continuously differentiable, so we can apply the implicit function theorem: it suffices to determine where the matrix

$$J(x, y, z) = \begin{pmatrix} 2x & 2y & -2z \\ 1 & 1 & 1 \end{pmatrix}$$

has rank 2. It cannot have rank 0, and if it has rank 1, then each of the columns must be a scalar multiple of a common vector \vec{v} . Since the second component is 1 in each case, we must have $2x = 2y = -2z$, and so $J(x, y, z)$ has rank 2 unless $(x, y, z) = (t, t, -t)$ for some $t \in \mathbb{R}$. If $(x, y, z) \in A$ and $(x, y, z) = (t, t, -t)$, then

$$t + t - t = 0 \iff t = 0.$$

Thus, away from $(0, 0, 0)$, the implicit function theorem applies and the claim follows.

iv) The conditions given in the question imply that the implicit function theorem applies, with there existing open $V_{x_0} \subset \mathbb{R}^2$ containing

$$(x_0, c(x_0)) \in \{(x, y) \mid f(x, y) = 0\} = S$$

open $U \subset \mathbb{R}$, and continuously differentiable $g_{x_0} : U \rightarrow \mathbb{R}$ such that

$$V_{x_0} \cap S = \{(x, g_{x_0}(x)) \mid x \in U\}.$$

The uniqueness of c implies that $c(x) = g_{x_0}(x)$ for every $x \in U$, and that c is differentiable at x_0 . Since this is true for every $x_0 \in \mathbb{R}$, we have that c is differentiable.

Since $f(x, c(x)) = 0$ for every $x \in \mathbb{R}$, we can apply chain rule to show that

$$\partial_x f(x, c(x)) + \partial_y f(x, c(x))c'(x) = 0$$

from which the claim follows.

Exercise 4 *The Challenge*

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a continuously differentiable function with $|f'(x)| \leq c < 1$ for all $x \in \mathbb{R}$. Define $\phi : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ by

$$\phi(x, y) = (x + f(y), y + f(x)).$$

1. Show that ϕ is continuously differentiable
2. Show the conditions of the inverse function theorem apply, and hence ϕ has a local inverse $\mu_{(p,q)}$ near every point $(p, q) \in \phi(\mathbb{R}^2)$
3. Show that ϕ is injective and therefore there exists $\mu : \phi(\mathbb{R}^2) \rightarrow \mathbb{R}^2$ such that $\phi(\mu(p, q)) = (p, q)$.

Hint: Suppose otherwise and find a way to use the mean value theorem

4. Show that $\phi(\mathbb{R}^2)$ is open and explain why μ must be continuously differentiable.
5. Show that ϕ is surjective.

Hint: can you rewrite surjectivity as a fixed point condition, or show the image is closed?

Solution 4

1. The Jacobian of ϕ is

$$\begin{pmatrix} 1 & f'(y) \\ f'(x) & 1 \end{pmatrix}$$

which has continuous entries, and so ϕ is continuously differentiable.

2. The determinant of the derivative of ϕ is $1 - f'(x)f'(y) > 0$ as from the bounds on the derivative. Hence $(D\phi)_{(x,y)}$ is invertible everywhere, and the inverse function theorem applies. Thus ϕ has a local inverse in some open around every point $(p, q) \in \mathbb{R}^2$.
3. Note that, by the mean value theorem

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) \leq c < 1$$

and so $f(x_2) - f(x_1) < x_2 - x_1$ for all $x_1 < x_2$. As such

$$|f(x) - f(p)| < |x - p|$$

for all $x \neq p \in \mathbb{R}$. Suppose $\phi(x, y) = \phi(p, q)$ with $x \neq p, y \neq q$. Then we have that

$$0 = x - p + f(y) - f(q) \quad \text{and} \quad y - q + f(x) - f(p) = 0$$

and so

$$|x - p| = |f(y) - f(q)| < |y - q| \quad \text{and} \quad |y - q| = |f(x) - f(p)| < |x - p|$$

which is impossible, as it implies $|x - p| < |x - p|$. Thus, we must have $x = p$ or $y = q$. If either of these hold, then the equalities also imply the other, so we must have $(x, y) = (p, q)$. Hence ϕ is injective.

Therefore, there exists $\mu : \phi(\mathbb{R}^2) \rightarrow \mathbb{R}^2$ such that $\phi(\mu(p, q)) = (p, q)$.

4. By the inverse function theorem, around every $(p, q) \in \phi(\mathbb{R}^2)$, there exists an open set $U_{(p,q)}$ and a continuously differentiable function $\mu_{(p,q)} : U_{(p,q)} \rightarrow \mathbb{R}^2$ such that $\phi(\mu_{(p,q)}(x, y)) = (x, y)$. Hence $U_{(p,q)} \subset \phi(\mathbb{R}^2)$, and we can write

$$\phi(\mathbb{R}^2) \subset \bigcap_{(p,q) \in \phi(\mathbb{R}^2)} U_{(p,q)} \subset \phi(\mathbb{R}^2).$$

Therefore the image is equal to this union and hence is open.

Furthermore, by the injectivity of ϕ , there can be at most one function $\eta : U_{(p,q)} \rightarrow \mathbb{R}^2$ such that $\phi(\eta(x, y)) = (x, y)$. As both $\mu_{(p,q)}$ and $\mu|_{U_{(p,q)}}$ satisfy this condition, they must be equal. Thus $\mu|_{U_{(p,q)}}$ is continuously differentiable. As the $U_{(p,q)}$ cover $\phi(\mathbb{R}^2)$, and continuous differentiability is a local condition, this implies μ is continuously differentiable everywhere.

5. We give two arguments. For the first, fix $(p, q) \in \mathbb{R}^2$ and note that $(p, q) \in \phi(\mathbb{R}^2)$ is equivalent to the function

$$\Phi(x, y) = (p - f(y), q - f(x))$$

having a fixed point somewhere in \mathbb{R}^2 . As \mathbb{R}^2 is closed, it is enough to show Φ is a contraction:

$$\begin{aligned}\|\Phi(x, y) - \Phi(a, b)\| &= \|(f(b) - f(y), f(a) - f(x))\| \\ &= \sqrt{(f(b) - f(y))^2 + (f(a) - f(x))^2} \\ &\leq \sqrt{c^2(y - b)^2 + c^2(a - x)^2} = c\|(x, y) - (a, b)\|.\end{aligned}$$

Thus a fixed point exists, and so ϕ is surjective. Hence, ϕ is a bijective continuously differentiable map with continuously differentiable inverse (a diffeomorphism!) from \mathbb{R}^2 to itself.

For the second argument, we want to show $\phi(\mathbb{R}^2)$ is closed. Let \vec{z} be a limit point of $\phi(\mathbb{R}^2)$. There is a sequence $\{\vec{z}_n\} \subset \phi(\mathbb{R}^2)$ such that $\lim_{n \rightarrow \infty} \vec{z}_n = \vec{z}$. Letting $\vec{x}_n = \mu(\vec{z}_n)$ we obtain a sequence in \mathbb{R}^2 which must converge to a point $\vec{x} \in \mathbb{R}^2$ by continuity of μ . Then by continuity of ϕ , $\vec{z} = \phi(\vec{x})$, so $\vec{z} \in \phi(\mathbb{R}^2)$. Hence $\phi(\mathbb{R}^2)$ contains all its limits points and is therefore closed. But we have already showed that it is open. The only non-empty subset of \mathbb{R}^2 that is both open and closed is \mathbb{R}^2 itself, so ϕ must be surjective.