MAU22203/33203 - Analysis in Several Real Variables

Tutorial Sheet 2

Trinity College Dublin

Course homepage

The use of electronic calculators and computer algebra software is allowed.

Exercise 1 Convergent subsequences

Let $\{\vec{x}_k\}$ be a bounded sequence in \mathbb{R}^m that does not converge to $\vec{0}$.

i) Show that there exist R, c > 0 such that $\{\vec{x}_k\}$ contains a subsequence contained within the set

$$\{\vec{x} \in \mathbb{R}^m \mid c \le ||\vec{x}|| \le R\},\$$

- ii) Show that this subsequence contains a convergent subsequence, converging to a point not equal to $\vec{0}$,
- iii) Hence conclude that $\{\vec{x}_k\}$ contains a convergent subsequences, converging to a point other than $\vec{0}$.

Exercise 2 Interiors

Given a subset $X \subset \mathbb{R}^m$, we define its interior X^o , closure \overline{X} , and boundary ∂X by

$$X^{o} = \bigcup_{\substack{U \subset X \\ U \text{ open}}} U,$$
$$\overline{X} = \bigcap_{\substack{F \supset X \\ F \text{ closed}}} F,$$
$$\partial X = \overline{X} \setminus X^{o}.$$

- i) Show that X^o is open and \overline{X} is closed,
- ii) Find the interior, closure, and boundary of

$$\{\vec{x} \in \mathbb{R}^m \mid ||\vec{x}|| \le 2\},\$$

iii) Find the interior, closure, and boundary of

$$\{(x,y) \in \mathbb{R}^2 \mid x \ge 2, y > 0\},\$$

iv) Find the interior, closure, and boundary of

$$\{x \in \mathbb{R} \mid x \in \mathbb{Q}\}.$$

Hint: It might be easier to consider the interior of the complement.

Exercise 3 Topological stuff

- i) Identify whether the following sets are open/closed in \mathbb{R}^2 :
 - a) $\{(x,y) \in \mathbb{R}^2 \mid xy = 1\},\$
 - b) $\{(x,y) \in \mathbb{R}^2 \mid x \neq 0, y \neq 0\},\$
 - c) $\{(x,y) \in \mathbb{R}^2 \mid \max\{|x|,|y|\} = 1\},\$
 - d) $\{(x,y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 < 17xy < 34\}$

ii) Suppose that $X \subset \mathbb{R}^m$ is not closed. Show that there exists a point $\vec{v} \in \mathbb{R}^m \setminus X$ such that

$$B(\vec{v}, \varepsilon) \cap X \neq \emptyset$$

for all $\varepsilon > 0$.

iii) Call a subset A of \mathbb{Z} open if $\mathbb{Z} \setminus A$ is finite or if A is empty. Show that this collection of open sets defines a topology on \mathbb{Z} .

Exercise 4 Continuous functions and convergent sequences

i) Without resorting to an $\varepsilon - \delta$ proof, show that if $\phi_1, \phi_2 : \mathbb{R}^m \to \mathbb{R}^n$ are continuous functions, then

$$\vec{x} \mapsto \phi_1(\vec{x}) + \phi_2(\vec{x})$$

is a continuous function.

ii) Without resorting to an $\varepsilon - N$ argument, prove that if we have two sequences $\{\vec{x}_k\}$ and $\{\vec{y}_k\}$ in \mathbb{R}^m converging to \vec{p} and \vec{q} respectively, then the sequence in \mathbb{R} given by

$$\{z_k = \langle \vec{x}_k, \vec{y}_k \rangle\}$$

converges to $\langle \vec{p}, \vec{q} \rangle$.

iii) Let $X \subset \mathbb{R}^m$ be a strict subset of \mathbb{R}^m , and suppose we have a point $\vec{p} \in \mathbb{R}^m \setminus X$. Show that

$$\phi_{\vec{p}}(\vec{x}) = \frac{1}{\|\vec{x} - \vec{p}\|}$$

is continuous on X.

iv) Hence argue that if X is not closed in \mathbb{R}^m , there exists $\vec{p} \in \mathbb{R} \setminus X$ such that the image $\phi_{\vec{p}}(X)$ is not bounded in \mathbb{R} .

Hint: Use 3.ii to construct a bad sequence.

Exercise 5 A challenge from Spivak

The following is a neat problem, where drawing pictures should make the answer obvious, though writing a good argument for it could be hard. Define a set $A \subset \mathbb{R}^2$ by

$$A = \{(x, y) \in \mathbb{R}^2 \mid 0 < x, \ 0 < y < x^2\}$$

- i) Show that every straight line in \mathbb{R}^2 passing through (0,0) contains an open interval I such that $I \cap A = \emptyset$.
- ii) Define

$$f(x,y) = \begin{cases} 1 & \text{if } (x,y) \in A, \\ 0 & \text{if } (x,y) \notin A. \end{cases}$$

Show that f(x, y) is not continuous at (0, 0).

iii) Fix a vector $(u,v) \in \mathbb{R}^2$ and define $g: \mathbb{R} \to \mathbb{R}$ by

$$g(t) := f(tu, tv).$$

Show that g is continuous at 0.

iv) Show that, for any continuous $h: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, the function

$$f_h(x,y) = \begin{cases} 1 & \text{if } (x,y) \in A_h, \\ 0 & \text{if } (x,y) \notin A_h. \end{cases}$$

is not continuous at (0,0), while the function $g_h(t) = f_h(tu,tv)$ is continuous at 0. Here, we define

$$A_h := \{(x, y) \in \mathbb{R}^2 \mid 0 < x, \ 0 < y < xh(x)\}$$