

MAU22203/33203 - Analysis in Several Real Variables

Exercise Sheet 4

Trinity College Dublin

Course homepage

This is an entirely optional homework. If submitted, the best 3 out of 4 homeworks will be considered for your continuous assessment. Answers are due for December 7th, 23:59.

Exercise 1 *Existence is enough right? (60pts)*

i) (15pts) Let $f : [0, 1] \rightarrow \mathbb{R}$ be a continuous function. Show there exists $c \in (0, 1)$ such that

$$\int_0^1 f(x), dx = f(c)$$

Hint: Mean value theorem

ii) (20pts) Let $F : [0, 1]^2 \rightarrow \mathbb{R}$ be a continuous function. Show there exists $(c, d) \in (0, 1)^2$ such that

$$\int_0^1 \int_0^1 F(x, y) dx dy = F(c, d)$$

Hint: Do it in steps. Don't forget to check for continuity along the way!

iii) (25pts) Let $F(x, y) = x^2 + xy + y^2$. Determine a point $(c, d) \in (0, 1)^2$ such that

$$\int_0^1 \int_0^1 F(x, y) dx dy = F(c, d)$$

Hint: I don't think there is a smart way to do this, but there is a systematic way.

Exercise 2 *Applying Fubini's theorem (40pts)*

1. (10pts) Let $f : [0, 1]^3 \rightarrow \mathbb{R}$ be a continuous function. Using Fubini's theorem for 2 variable functions, show that

$$\int_0^1 \int_0^1 \int_0^1 f(x, y, z) dx dy dz = \int_0^1 \int_0^1 \int_0^1 f(x, y, z) dy dz dx$$

Hint: Remember the integrand must be continuous to use Fubini!

2. (10 pts) Show that

$$f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)^2}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{otherwise} \end{cases}$$

is continuous on $[0, 1]^2$.

Hint: Bound the absolute value near 0 in terms of norms. Note that $|x^2 - y^2| \leq x^2 + y^2$.

3. (20 pts) Compute

$$\int_{[0,1]^2} \frac{xy(x^2 - y^2)^2}{x^2 + y^2} dA$$

Hint: You may (and probably should) use without proof that

$$\int_0^1 t^5 (\ln(t^2 + 1) - \ln(t^2)) dt = \frac{\ln(2)}{3} - \frac{1}{12}$$