MAU22203/33203 - Analysis in Several Real Variables

Exercise Sheet 1

Trinity College Dublin

Course homepage

Answers are due for October 12th, 23:59. The use of electronic calculators and computer algebra software is allowed.

Exercise 1 Properties of sequences (60pts)

Let $\{\vec{x}_n\}$ and $\{\vec{y}_n\}$ be two sequences of points in \mathbb{R}^m , and let $\lambda \in \mathbb{R}$ be a real number. Suppose that $\{\vec{x}_n\}$ converges to a point \vec{p} , and $\{\vec{y}_n\}$ converges to a point \vec{q} . By giving a formal ε -N proof, establish the following:

- (15pts) The sequence $\{\lambda \vec{x}_n\}$ converges to $\lambda \vec{p}$, Hint: consider $\lambda = 0$ as a separate case.
- (15pts) The sequence $\{\vec{z}_n = \vec{x}_n + \vec{y}_n\}$ converges to $\vec{p} + \vec{q}$.
- (30pts) Suppose further that, for all n > 0, $\|\vec{x}_n \vec{y}_n\| < \frac{1}{n}$. Conclude that $\vec{p} = \vec{q}$.

Hint: We haven't yet shown that limits commute with norms, so we can't freely conclude this. Can we show that $\|\vec{p} - \vec{q}\|$ must be smaller than all positive reals? Try the extending the triangle inequality to a sum of three terms!

Exercise 2 Bounded operators (40pts)

In the following, you may use any standard facts from your first year courses. Let $A: \mathbb{R}^m \to \mathbb{R}^m$ be a linear transformation represented by the $(m \times m)$ -matrix $(A_{i,j})_{\substack{1 \le i \le m \\ 1 \le j \le m}}$ with respect to the standard bases.

(15 pts) Show that there exists a constant C > 0 such that

$$||A\vec{x}|| \le C||\vec{x}|$$

for all $\vec{x} \| \in \mathbb{R}^m$.

Hint: what are the components of $A\vec{x}$ and how could we bound them using the Cauchy-Schwarz inequality?

(10 pts) Hence, or otherwise, show that

$$||A^n \vec{x}|| \le C^n ||\vec{x}||$$

for all $\vec{x} \in \mathbb{R}^m$ and all $n \geq 0$.

(15 pts) Let $A: \mathbb{R}^3 \to \mathbb{R}^3$ be given by the below matrix, and define a sequence of points in \mathbb{R}^3 by $\vec{x}_n := A^{n-1}\vec{x}_1$, where \vec{x}_1 is given below. Prove that $\{\vec{x}_n\}$ converges to $\vec{0}$.

$$A = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{3} \\ 0 & \frac{1}{4} & \frac{1}{3} \\ \frac{1}{5} & 0 & \frac{1}{20} \end{pmatrix}, \quad \vec{x}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

Hint: Try to bound $\|\vec{x}_n - \vec{0}\| = \|\vec{x}_n\|$ by something that converges to 0.