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This is an entirely optional homework. If submitted, the best 3 out of 4
homeworks will be considered for your continuous assessment. Answers are

due for December 7th, 23:59.

Exercise 1 Existence is enough right? (60pts)

i) (15pts) Let f : [0, 1] → R be a continuous function. Show there exists
c ∈ (0, 1) such that ∫ 1

0

f(x), dx = f(c)

Hint: Mean value theorem

ii) (20pts) Let F : [0, 1]2 → R be a continuous function. Show there exists
(c, d) ∈ (0, 1)2 such that∫ 1

0

∫ 1

0

F (x, y) dx dy = F (c, d)

Hint: Do it in steps. Don’t forget to check for continuity along the way!

iii) (25pts) Let F (x, y) = x2 + xy + y2. Determine a point (c, d) ∈ (0, 1)2

such that ∫ 1

0

∫ 1

0

F (x, y) dx dy = F (c, d)
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Hint: I don’t think there is a smart way to do this, but there is a sys-
tematic way.

Solution 1

i) Denote by F : R → R the function

F (x) =

∫ x

0

f(t) dt

which is differentiable with derivative f(x), by the fundamental theorem
of calculus. It is continuous at 0 and 1, so we can apply the mean value
theorem to conclude that there exists c ∈ (0, 1) such that

F (1)− F (0)

1− 0
= F ′(c) = f(c)

We have that F (0) = 0 and F (1) =
∫ 1

0
f(x) dx, so the claim follows.

ii) Fixing y, the function F (x, y) is continuous as a function of x, and so
there exists cy ∈ (0, 1) such that∫ 1

0

F (x, y) dx = F (cy, y).

The left hand side is a continuous function of y, and so the right hand
side is a continuous function of y. Hence, we can repeat the argument
to show that there exists d ∈ (0, 1) such that∫ 1

0

∫ 1

0

F (x, y) dx dy =

∫ 1

0

F (cy, y) dy = F (cd, d) = F (c, d)

where we write c = cd.

Alternatively, note that g(y) =
∫ 1

0
F (x, y) dx is continuous and hence

there exists d ∈ (0, 1) such that∫ 1

0

F (x, d) dx = g(d) =

∫ 1

0

g(y) dy =

∫ 1

0

∫ 1

0

F (x, y) dx dy

Similarly, F (x, d) is a continuous function of x, so there exists c ∈ (0, 1)
such that

F (c, d) =

∫ 1

0

F (x, d) dx =

∫ 1

0

∫ 1

0

F (x, y) dx dy
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iii) One approach is to take c = 1
2
and compute

1

4
+

d

2
+ d2 = F (c, d) =

∫ 1

0

∫ 1

0

F (x, y) dx dy =
11

12

Solving this for d, we find

d =

√
105− 3

12
∈ (0, 1).

If we wanted to do this is a slightly more systematic way, we can split
the computation into a few steps. We compute

c2 + cy + y2 = F (c, y) =

∫ 1

0

F (x, y) dx =
1

3
+

y

2
+ y2

and so to get c ∈ (0, 1), we must have

c(y) = −y

2
+

√
y2 + 2y + 4/3

2

as a function of y. Then, we compute

1

3
+

d

2
+ d2 = F (c(d), d) =

∫ 1

0

∫ 1

0

F (x, y) dx dy =
11

12

and hence

d =

√
93− 3

12
, c =

1

8

1−
√

31

3
+

√
37

3
+

√
93

2

 .

I think.

Exercise 2 Applying Fubini’s theorem (40pts)

1. (10pts) Let f : [0, 1]3 → R be a continuous function. Using Fubini’s
theorem for 2 variable functions, show that∫ 1

0

∫ 1

0

∫ 1

0

f(x, y, z) dx dy dz =

∫ 1

0

∫ 1

0

∫ 1

0

f(x, y, z) dy dz dx

Hint: Remember the integrand must be continuous to use Fubini!
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2. (10 pts) Show that

f(x, y) =

{
xy(x2−y2)2

x2+y2
if (x, y) ̸= (0, 0),

0 otherwise

is continuous on [0, 1]2.

Hint: Bound the absolute value near 0 in terms of norms. Note that
|x2 − y2| ≤ x2 + y2.

3. (20 pts) Compute ∫
[0,1]2

xy(x2 − y2)2

x2 + y2
dA

Hint: You may (and probably should should) use without proof that∫ 1

0

t5
(
ln(t2 + 1)− ln(t2)

)
dt =

ln(2)

3
− 1

12

Solution 2

i) For fixed z, the function f(x, y, z) is continuous as a function of x and
y. Hence ∫ 1

0

∫ 1

0

f(x, y, z) dx dy =

∫ 1

0

∫ 1

0

f(x, y, z) dy dx

and so∫ 1

0

∫ 1

0

∫ 1

0

f(x, y, z) dx dy dz =

∫ 1

0

(∫ 1

0

∫ 1

0

f(x, y, z) dx dy

)
dz

=

∫ 1

0

(∫ 1

0

∫ 1

0

f(x, y, z) dy dx

)
dz

=

∫ 1

0

∫ 1

0

∫ 1

0

f(x, y, z) dy dx dz.
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As
∫ 1

0
f(x, y, z) dy is a continuous function of x and z, we have that∫ 1

0

∫ 1

0

∫ 1

0

f(x, y, z) dy dx dz =

∫ 1

0

(∫ 1

0

∫ 1

0

f(x, y, z) dy

)
dx dz

=

∫ 1

0

(∫ 1

0

∫ 1

0

f(x, y, z) dy

)
dz, dx

=

∫ 1

0

∫ 1

0

∫ 1

0

f(x, y, z) dy dz dx.

ii) The function is clearly continuous away from (0, 0) so it suffices to show
that

lim
(x,y)→(0,0)

f(x, y) = f(0, 0) = 0.

Note that, for (x, y) ̸= (0, 0)

|f(x, y)| = |xy| |x
2 − y2|2

|x2 + y2|

≤ |xy|(|x|
2 + |y|2)2

|x2 + y2|
= |xy|frac(x2 + y2)2x2 + y2

= |xy|(x2 + y2) = |xy| · ∥(x, y)∥2

which clearly tends to 0 as (x, y) → (0, 0). Thus,

lim
(x,y)→(0,0)

f(x, y) = 0

and f is continuous.

iii) Since f is continuous, we can compute this as the iterated integral

L =

∫ 1

0

∫ 1

0

xy(x2 − y2)2

x2 + y2
dx dy.
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Letting u = x2 + y2 in the x-integral, we find that

L =
1

2

∫ 1

0

∫ y2+1

y2

y(u− 2y2)2

u
du dy

=
1

2

∫ 1

0

∫ y2+1

y2
yu− 4y3 +

4y5

u
du dy

=
1

4

∫ 1

0

y − 6y3 + 8y5 ln(y2 + 1)− 8y5 ln(y2) dy

=
1

4

(
1

2
− 3

2
+

8 ln(2)

3
− 2

3

)
=

2 ln(2)

3
− 5

12
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