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Answers are due for November 30th, 23:59.
The use of electronic calculators and computer algebra software is allowed.
If typesetting your work, the following code can be used to product a 3× 4

matrix, and can be easily modified to produce other sizes of matrices:

\[ A= \begin{pmatrix}

a & b & c & d \\

e & f & g & h \\

i & j & k & l

\end{pmatrix}

\]

Exercise 1 Applications of the inverse function theorem (40pts)

i) (15pts) Let f : R2 → R2 be the map

f(x, y) =

(
yex

cos(xy)

)
Determine the derivative (D f)(x,y) at all points at which f is differen-
tiable.

ii) (15pts) We say that f is locally invertible at (x, y) ∈ R2 if there exists
open U ∋ (x, y) such that f : U → f(U) has a continuously differentiable
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inverse. Let A be the set of points (x, y) at which f is locally invertible.
Is A open, closed, or either?

Hint: Can we write A as the inverse image of a set under a continuous
map?

iii) (10pts) Let (x0, y0) ∈ A. What is the derivative of the local inverse of f
at f(x0, y0)?

Solution 1

i) We first compute the Jacobian

(J f)(x,y) =

(
yex ex

−y sin(xy) −x sin(xy)

)
As all entries of the Jacobian are continuous on R2, f is differentiable
everywhere in R2 with derivative (D f)(x,y) = (J f)(x,y).

ii) Since f is continuously differentiable, the inverse function theorem tells
us that f is locally invertible when it has invertible derivative. The
derivative is invertible when it has non-zero determinant, and so

A = {(x, y) | det(D f)(x,y) ̸= 0}.

If the determinant is a continuous function of (x, y), then this set is
open, as it is the inverse image of the open set R \ {0}. We can check
that

det(D f)(x,y) = ex sin(xy)(y − xy)

is definitely continuous, so A is open.

iii) The derivative of the local inverse is given by the inverse of the derivative,
and hence is equal to

1

ex sin(xy)(y − xy)

(
−x sin(xy) −ex

y sin(xy) yex

)

2



Exercise 2 Applying the implicit function theorem (60pts)

1. (20pts) Let
S = {(x, y) ∈ R2 | 8y2 = x3 + 7x2}

Let S0 be the set of points (x0, y0) ∈ S for which the assumptions of the
implicit function theorem apply. Determine S0. Is S0 open or closed
(or neither) in S?

2. (10 pts) Explain why, for open V = B((0, 0), 1), there does not exist
an open interval (a, b) such that V ∩ S is homeomorphic to (a, b). You
do not have to give a rigorous proof.

Hint: Look at the graph and count the number of points in the bound-
aries. As a reminder, a homeomorphism is a continuous bijection
with a continuous inverse. It preserve all topological properties, like
openness, closedness, as well as Cauchy sequences and most notions of
boundaries.

3. (30 pts) Determine the maximal open U ⊂ S containing (x0, y0) =
(−7, 0) on which x can be expressed as a continuously differentiable
function of y.

Hint: Implicit function theorem tells you where you can do this locally.
Is it possible to patch these local functions together? What do the local
functions look like on the intersection of their domains? You may use
without proof that if (x, y) ∈ S, x ≥ −7.

Solution 2

i) The function f(x, y) = 8y2−x3− 7x2 is continuously differentiable with
derivative

(J f)(x0,y0) =
(
−3x2 − 14x, 16y

)
which has rank 1 unless

3x2 + 7x = 16y = 0 which implies thatx ∈ {0, −14

3
}, y = 0

Since f(−7
3
, 0) ̸= 0, (0, 0) is the only point in S such that (J f)(x0,y0) has

rank 0. Thus, S0 = S \ {(0, 0)}. Furthermore, since U = R2 \ {(0, 0)} is
open in R2, S0 = S ∩ U is open in S.
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ii) Looking at the graph of of f(x, y) = 0, we see that V ∩ S is roughly a
cross, which clearly has 4 boundary points, which an interval in R has
only 2 boundary points. A homeomorphism would preserve the number
of boundary points as it preserves all topological information, so no such
homeomorphism can exist.

iii) Note that 3x2 + 14x ̸= 0 for all −7 ≤ x ≤ −14
3
, and hence x can be

expressed locally as a function of y around every point of S satisfying
this condition. Thus, we obtain an open V(x, y) ∋ (x, y), open U(x,y) and
a continuously differentiable g(x,y) : U(x,y) → R such that

V(x,y) ∩ S = {(g(x,y)(z), z) | z ∈ U(x,y)

If
V(x1,y1) ∩ V(x2,y2) ̸= ∅

then we must have that g(x1,y1) = g(x2,y2) on the intersection, and so we
can extend these to a single continuously differentiable function on their
union. In this way, we can glue together all our local functions to obtain
x as a continuously differentiable function of y on

U = {(x, y) ∈ S | x <
−14

3
}

which is open in S as it is the intersection of an open set with S.

We cannot extend this any further. We can either argue that the graphs

y = ±
√

x3 + 14x

8

have turning points at x = −14
3
, and so the map S → R taking (x, y) → x

is not injective, so no g could exists, or we could use implicit differenti-
ation to show that

dg

dy
=

∂f

∂y

∂x

∂f

which is infinite at these points. A rigorous explanation is not needed -
any valid heuristic will do.
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