MAU22103/33101 - Introduction to Number Theory

Exercise Sheet 3

Trinity College Dublin

Course homepage

Answers are due for Monday November 3rd, 2pm. The use of electronic calculators and computer algebra software is allowed.

Exercise 1 Fermat primes, elite primes, and Pépin's test (100 pts)

We define the Fermat numbers by

$$F_n = 2^{2^n} + 1.$$

Prime Fermat numbers are closely related to constructability of polygons, and are useful for pseudo-random number generation. However, it is conjectured that only

$$F_0 = 3, F_1 = 5, F_2 = 17, F_3 = 257, F_4 = 65537$$

are prime. The goal of this problem is provide a remarkably efficient test for determining the primality of F_n , that has only been successfully executed about 8 times.

1. (20pts) Let p be prime. By considering the multiplicative order of p, show that if

$$p^{\frac{F_n-1}{2}} \equiv -1 \pmod{F_n}$$

then F_n is prime.

2. (20pts) Show that if F_n is prime and $n \geq 1$, then

$$p^{\frac{F_n-1}{2}} \equiv \left(\frac{F_n}{p}\right) \pmod{F_n}$$

3. (10pts)Suppose that F_n is not a square modulo p, and conclude that F_n is prime if and only if

$$p^{\frac{F_{n-1}}{2}} \equiv -1 \pmod{F_n}.$$

4. (25pts) Hence conclude Pépin's test:

$$F_n$$
 is prime \Leftrightarrow $3^{\frac{F_n-1}{2}} \equiv -1 \pmod{F_n}$

for all $n \geq 1$. Hence show that F_3 is prime.

Hint:
$$a^{2^n} = \left(a^{2^{n-1}}\right)^2$$

If we are willing to restrict to sufficient large n, we can choose a prime other than 3. Specifically, we call a prime p an elite prime if F_n is a square modulo p for finitely many n. We have actually shown a generalised Pépin's criterion: if p is an elite prime and n is sufficiently large, then F_n is prime if and only if

$$p^{\frac{F_n-1}{2}} \equiv -1 \pmod{F_n}.$$

5. (25pts) Show that 5 is an elite prime, but that 11 is not. Explain why F_n is a square modulo 11 infinitely often.

Hint: Recall that a sequence defined by $x_{n+1} = f(x_n)$ for some function on a finite set is eventually periodic

- 6. (Optional) Use Pépins test to show that F_4 is prime.
- 7. (OptionaL) The Mersenne primes $M_1 = 3$, and $M_2 = 5$ are elite. $M_3 = 9$ is not prime. Show that no Mersenne prime $M_n = 2^n + 1$ can be an elite prime for n > 3.

This was the only exercise that you must submit before the deadline. The following exercises are not mandatory; they are not worth any points, and you do not have to submit them

However, I strongly encourage you to give them a try, as the best way to learn number theory is through practice.

The exercises marked with a star are the exercises I will try to talk about in the tutorial lecture. If there are any exercises would would particularly like to discuss, please let me know

The exercises are arranged by theme, and roughly in order of difficulty within each theme, with the first few working as good warm-ups, and the remainder being of similar difficulty to the main exercise. You are welcome to email me if you have any questions about them. The solutions will be made available with the solution to the main exercise.

Exercise 2 Computing roots ★

- i) Knowing that 127 is prime, how many elements $\overline{a} \in \mathbb{Z}/127\mathbb{Z}$ satisfy $\overline{a}^{53} = \overline{2}$? Compute them.
- ii) How many elements satisfy $\overline{a}^3 = \overline{2}$?

Exercise 3 Finding the floor

Prove the following properties of the floor function:

- i) For any $x, y \in \mathbb{R}$, $|x+y| \ge |x| + |y|$,
- ii) For $n \in \mathbb{N}$ and $x \in \mathbb{R}$

$$\left| \frac{\lfloor x \rfloor}{n} \right| = \left\lfloor \frac{x}{n} \right\rfloor,$$

iii) For any $n \in \mathbb{N}$ and $x \in \mathbb{R}$,

$$\lfloor x \rfloor + \lfloor x + \frac{1}{n} \rfloor + \dots + \lfloor x + \frac{n-1}{n} \rfloor = \lfloor nx \rfloor.$$

Exercise 4 Computing Legendre symbols ★

Compute the following Legendre symbols:

$$\begin{array}{ccc} \text{(i)} \left(\frac{39}{47}\right) & \text{(ii)} \left(\frac{91}{101}\right) & \text{(iii)} \left(\frac{261}{2017}\right) & \text{(iv)} \left(\frac{3}{1087}\right) \\ \text{(v)} \left(\frac{-6}{10007}\right) & \text{(vi)} \left(\frac{24}{191}\right) & \text{(vii)} \left(\frac{8000}{17}\right) & \text{(viii)} \left(\frac{-10}{1009}\right) \end{array}$$

Exercise 5 Factorials and floors

Let $n \in \mathbb{N}$ and let $p \in \mathbb{N}$ be prime. Show that

$$v_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor.$$

Hint: How many multiples of p^k can we find in the product n!?. Also, note that this is actually a finite sum!.

Exercise 6 Sums of Legendre symbols

Let $p \in \mathbb{N}$ be an odd prime.

- i) Compute $\sum_{a=0}^{p-1} \left(\frac{a}{p}\right)$.
- ii) Compute

$$\sum_{a=0}^{p-1} \left(\frac{a}{p}\right) \left(\frac{x+1}{p}\right)$$

Hint: For all non-zero a, write $\overline{a}(\overline{a} + \overline{1}) = \overline{a}^2(1 + \overline{a}^{-1})$.

Exercise 7 Primes of the form $6k + 1 \bigstar$

Let p > 3 be a prime.

- i) Prove that $\overline{-3}$ is a square in $\mathbb{Z}/p\mathbb{Z}$ if and only if $p \equiv 1 \pmod{6}$.
- ii) Using the identity $x^3 1 = (x 1)(x^2 x + 1)$, determine the number of solutions of $x^3 1 = 0$ in $\mathbb{Z}/p\mathbb{Z}$ in terms of $p \pmod{6}$.

iii) Suppose there are finitely many primes p_1, \ldots, p_k such that $p_i \equiv 1 \pmod{6}$. By considering

$$N = 12(p_1 \dots p_k)^2 + 1$$

derive a contradiction to conclude there are infinitely many such primes.

Exercise 8 Primitive roots and Legendre symbols

Let p be an odd prime, and let $\overline{g} \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ be a primitive root. Show that $\left(\frac{g}{p}\right) = -1$

Exercise 9 When Euler doesn't apply

Define $t_n = \overline{2}^n$ in $\mathbb{Z}/40\mathbb{Z}$. As $\gcd(2,40) = 2 \neq 1$, Euler's theorem does not apply, so we do not immediately get periodicity. However, we must get that the sequence is ultimately periodic. We want to compute the period and the length of the tail.

- i) Give a formula for $t_n = \overline{2}^n$ in $\mathbb{Z}/5\mathbb{Z}$ in terms of $n \pmod{4}$.
- ii) Give a formula for $t_n = \overline{2}^n$ in $\mathbb{Z}/8\mathbb{Z}$.
- iii) Deduce a formula for $t_n = \overline{2}^n$ in $\mathbb{Z}/40\mathbb{Z}$. What is the period? What is the length of the initial tail?

Exercise 10 A test for higher powers \bigstar

Let $p \in \mathbb{N}$ be prime, $k \in \mathbb{N}$ be a positive integer, $g = \gcd(k, p - 1)$, and $s = \frac{p-1}{q}$. Finally, let $\overline{a} \in (\mathbb{Z}/p\mathbb{Z})^{\times}$.

- i) Prove that \overline{a} is a k^{th} power if any only if $a^s \equiv 1 \pmod{p}$,
- ii) Is $\overline{9}$ a cube in $\mathbb{Z}/19\mathbb{Z}$? What about $\overline{7}$?
- iii) Show that \overline{a}^s is a solution of $x^g \overline{1}$ in $\mathbb{Z}/p\mathbb{Z}$ for any element $\overline{a} \in (\mathbb{Z}/p\mathbb{Z})^{\times}$.
- iv) Choose a primitive root $\bar{r} \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, and define a pseudo-Legendre symbol by

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix}_k := \begin{cases} 0 \text{ if } \overline{a} = \overline{0}, \\ e^{\frac{2\pi i s t}{p-1}} \text{ if } \overline{a} = \overline{r}^s. \end{cases}$$

Show that this is well defined, and that

$$\left(\frac{ab}{p}\right)_{k,\varphi} = \left(\frac{a}{p}\right)_{k,\varphi} \left(\frac{b}{p}\right)_{k,\varphi}, \quad \text{and} \quad \left(\frac{-1}{p}\right)_{k,\varphi} = (-1)^s.$$

This type of map is often called a character. In order to perform any useful computations with this pseudo-Legendre symbol though, we would need a reciprocity law. Such a reciprocity law exists, coming from the much more general Artin reciprocity law, which arguably spawned a huge area of modern number theory and is hopelessly beyond the scope of this course.

Exercise 11 Easy square roots

- i) Let p = 4k 1 be prime. Show that for non-zero $\overline{a} \in \mathbb{Z}/p\mathbb{Z}$, exactly one of \overline{a} and $\overline{-a}$ can be a square.
- ii) Let p=4k-1 be prime, and let $\overline{a}\in\mathbb{Z}/p\mathbb{Z}$ be a non-zero quadratic residue (i.e. $\left(\frac{a}{p}\right)=1$). Show that \overline{a}^k is a square root of \overline{a} , that is to say $\overline{a}^{2k}=\overline{a}$.
- iii) Use this result to explicitly solve the equation of the first part of Exercise 13 in $\mathbb{Z}/43\mathbb{Z}$ and $\mathbb{Z}/47\mathbb{Z}$.

Exercise 12 Wilson's theorem

Show that for p a prime number

$$(p-1)! \equiv -1 \pmod{p}.$$

Hint: Try to pair 1, 2, ..., p-1 up with their multiplicative inverse modulo p. Consider p = 2 separately.

Exercise 13 2021 was a better year for number theory (100 pts) Oh to be teaching in a year with fewer factors.

i) Determine the number of solutions to the equation

$$x^2 - 5x + 2 = 0$$

in

- a) $\mathbb{Z}/43\mathbb{Z}$,
- b) $\mathbb{Z}/47\mathbb{Z}$,
- c) $\mathbb{Z}/2021\mathbb{Z}$

Hint: $2021 = 43 \times 47$, and both 43 and 47 are prime, and in particular coprime.