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This is an entirely optional homework. If submitted, the best 5 out of 6
homeworks will be considered for your continuous assessment. Answers are
due for Friday December 5th*d, 23:59
The use of electronic calculators and computer algebra software is allowed.

Exercise 1 Should’ve used this last year!

In this, we will solve the Pell-Fermat equation
2? Tyt =1

for z,y € Z.

1. (30 pts) Determine the continued fraction expansion
VT =lag,ay,... ap,by,. .., 0]
2. (30 pts) Hence, determine the fundamental solution of the above Pell-
Fermat equation

3. (30 pts) Determine a solution (x,y) to the Pell-Fermat equation with
y > 100


https://www.maths.tcd.ie/~keilthya/teaching/2025/NT/nt.html

4. (10 pts) Prove that there exists an infinite family of solutions (z,, y»)
such that 3|y,

Hint: Binomial expansion

Solution 1

1. We can check that /7 ~ 2.64575..., so ag = 2. Proceeding with the
computation, we find that

Ty = L = VT2 = 1.54858...
VT -2 3

a; =1

e B VTHL e
VT -1 2

a, =1

T3 = 2 = V7] = 1.21525...
VT -1 3

ag =1

= — = /T4 2 = 4.64575...
VT -2

a, =4

J— 1 —
T5 = \/7 — 5 =
Hence, everything will repeat from there. Thus
V=R TT1

2. We begin computing convergents of v/7, until we find a solution.

(pos qo) = (2, 1),

(P1,q1) = (po +p-1,90 + q-1) = (3, 1),
(p2,42) = (p1 +po, @1 + Qo) = (5,2),
(p3,q3) = (P2 + 11,02 + 1) = (8,3)
and we quickly find that

82 -7(3)2 =1
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and so (z,y) = (8, 3) is the fundamental solution.

. All other solutions are determined by the coefficients of (8 + 3v/7)".
We have that

(84 3V/7)? = 127 + 48V/7
(8 4 3v/7)® = 2024 + 765V/7.

Thus (z,y) = (2024, 765) gives an example of a solution with y > 100.
I should have used this last year.

. We can define an infinite sequence of solutions by
Tn + Y VT = (84 3V7)"

and so it suffices to show that the coefficient of v/7 in the right hand
side is divisible by 3

By the binomial theorem

43V =Y (Z) gk (3\/?)k .

Comparing the coefficients of v/7, we see that

yNT= Y (2t11)8n2t1 (3\/?>2t+1

0<2t+1<n

_ ( Z (Qtn 1) gn—2t—1 o 2t+1 o 7t) J7
0<2t+1<n +

as only the odd powers of /7 contribute. Hence

n
= 8n—2t—1 % 32t+1 X 7t
Y 2 <2t + 1)

0<2t+1<n

n
:3 8n—2t—1 32t 7t
( D <2t+1> o
0<2t+1<n

which is clearly divisible by 3.



This was the only exercise that is required for your submission
to be considered. All remaining exercises are entirely optional and
are not worth any points

However, I strongly encourage you to give them a try, as the best way to
learn number theory is through practice.

The exercises are arranged by theme, and roughly in order of difficulty
within each theme, with the first few working as good warm-ups, and the
remainder being of similar difficulty to the main exercise. You are welcome
to lemail me if you have any questions about them. The solutions will be
made available with the solution to the main exercise.

Exercise 2 Computing continued fraction expansions

Compute the complete continued fraction expansions of the following quadratic
irrationals

i) V13
i) V17

i) VT

Solution 2

We know all these will be eventually periodic, so we just need to compute
until we loop around

i) ao = [V13] = 3, and so
1 Vi3+43

xl_\/ﬁ_g 1
a; =1

1 4 V13 +1
YRR VBl


mailto:akeilthy@tcd.ie

3 V1342

x3_\/1_3—2_ 3

a3 =1
3 V1341

Ty = Bl 1

as =1

Ty = \/— 3—\/—+3

as =0

Te = ! \/_+3 =TI
Viz—-3 4

and so we have entered the loop. Thus
V13 =1[3,1,1,1,1,1,6].

ii) ag =4, and so

r = —\/_—|—4
\/__
CL1:8
! 1744
Ty — — = =
2 ST 4 1
and so
V17 = [4,8].
iii) We compute ay = 6, and so
2 VTH+1
1 1 3
a1:1
k VT+2
To = =
2 /72
a2:4



VT -2 3
as =1
3 VT+1
Ty \/7_1 5
ay =
. 2 :\/7+1_$1
V71 3
and so -
+
T:[& 4,1, 1]
iv) ag = 2, and
2 2V/B+2
$1—\/g_1— 7
a; =1
7
x2=2\/§—_5=2\/§—|—5
ar = 10
1 2845
BT ok 7
ag =1
T 2vB4+2 B+
MTOR—2 4 T2
as =1
e 2 :2\/§+2:$1
V8 —1 7
and so
34VS b T,
5 1,10, 1,
v) We have that ag = 1 and
1
xlzﬂ_lz\/ﬁ%—l
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(11:2

1
Ty = :\/54—1:1:
2 /21 1

and so

V2 =11,2].

Exercise 3 The battle of Hastings

The battle of Hastings, took place on October 14, 1066, is referred to in the
following fictional historical text, taken from Amusement in Mathematics (H.
E. Dundeney, 1917), refers to it:

“The men of Harold stood well together, as their wont was, and formed
thirteen squares, with a like number of men in every square thereof. (. . . )
When Harold threw himself into the fray the Saxons were one mighty square
of men, shouting the battle cries ‘Ut!’, ‘Olicrosse!’, ‘Godemite!’.”

Use continued fractions to determine the minimal number of soldiers this
fictional historical text suggests Harold IT had at the battle of Hastings.

Solution 3

Prior to Harold joining the battle, there are thirteen squares of men, so 1332
men overall, for some y > 0. After Harold joins, there is one big square, so
22 for some z > 0. Since Harold was the only mentioned addition, we must
have

By’ +1=2> & 22-137=1

Thus, it suffices to find the fundamental solution to this Pell-Fermat equation.
Using the continued fraction expansion computed in the previous exercise,



we compute the convergents of 1/13:

(Pos go) = (3, 1)
(p1,q1) = (4, 1)
(P2, g2) = (7,2)
(ps;g3) = (11,3)
(pa; q4) = (18,5)
(ps, gs5) = (119, 33)
(ps gs) = (137, 38)
(p7,g7) = (256, 71)
(ps; gs) = (393,109)
(p9; g9) = (649, 180)

Checking all of these, we find that the first solution is
6497 — 13(180)* = 1

Hence, (z,y) = (649,180) is the minimal solution. We could have gotten
there slightly faster by noting that

182 —13(5)* = —1

and deducing that a solution (a fundamental solution) must therefore corre-
spond to

(18 + 5V/13)2.

Either way, Harold had 13(180)? = 421,200 soldiers other than himself,
roughly a fifth of the population of England at the time!

Exercise 4 Negative Pell Equations
Let d € N be a non-square. Can we find integers =,y € Z such that
22— dy? = —17

i) Show that if (z,y) is a solution to the negative Pell-Fermat equation,
then (z,w) = (2® + dy? 2xy) is a solution to the usual Pell-Fermat
equation

22 —dw® =1

Hint: Norm



ii) Let (a,b) be the fundamental solution of
w2 —dy? =1.
Show that there exists a solution to

v? —dy? = —1

Va+bVd e Z|Vd.

Hint: For the < implication, find a nice polynomial satisfied by the
square root. How many real roots does this have?

if and only if

iii) Hence determine a solution to
=17y = —1

You may use that
332 - 17(8)* =1

Remark 1. In practice, computing the square root of a fundamental solution
1s not the best way to compute a solution to the negative Pell-Fermat equation.
A solution exists if and only if the continued fraction of V/d has odd period,
and if such a solution exists, it will be (pp, qn) for some convergent before that
corresponding to the fundamental solution. As such, computing the square
root is only useful if you are given the fundamental solution - otherwise you’ll
solve the negative Pell-Fermat equation along the way to solving the positive
Pell-Fermat equation.

Solution 4

i) If (z,y) is a solution to the negative Pell-Fermat equation, that means
that
N(z +yVd) = —1

and hence

2

N((z + yvVd)?) = (N(x + y\/?i)) (—1)2=1



ii)

and so taking (z,w) defined by
z+wVd = (x4 yVd)? = 2® + dy® + 2zyVd
gives a solution to the usual Pell-Fermat equation.

If (z,y) is a solution to the negative Pell-Fermat equation, then (z +
y\/d)? is a unit in Z[v/d] and hence

(z + yVd)? = £(a + bVd)"

for some n € Z. We can assume, without loss of generality, that z,y > 0,
and hence we must have

(z+yVd)* = (a+bVd)"
for some n > 0. Then, if n = 2m
z+yvVd = (a+b/d)™"

and so 22 — dy? = 1 # —1, and so n = 2m + 1 must be odd. Thus

z+yVd=(a+bVd) ™\ a+bVd

and so

Va+bvd = % — (z + yVd)(a — W)™ € Z[Vd|

In contrast, suppose that there exists a = = + yvd € Z[\/a] such that
o’ = (z +yVd)? = a+bVd.
Considering norms, we see that we must have
N(a) = 2% — dy* = +1.
If N(a) = 1, then we must have that there exists n € Z such that
a = t(a+bVd)" = o™
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and so f(a) =0 for f(z) = 2"+ z or f(z) = 2*" — 2. Since a # 0, this

means that « is a root of

g(z) =2"""1+1

which have at exactly one real root of z = 1. Since a # £1, we cannot
have that N(a) = 1 and hence N(a) = —1, giving a solution to the

negative Pell-Fermat equation.

iii) We will determine z,y € N such that
(z +yV17)? = 33 + 8V17
or equivalently, such that
2>+ 17y* =33 and 22y =S8.
Since 2zy = 8, xy = 4 and so we have that

(z,y) € {(1,4),(2,2), (4, 1)}.

Checking these, we see that x = 4, y = 1 is a desired pair. And we can

easily check that
42 —17(1)* = —1.
Exercise 5 Fractions to series

Let z € (0,1) be an irrational real, and denote by [ag, a1, ..., a,] =
convergents of x. Show that

SR

Hint: Can we write (—1)"™ in terms of convergents?
Solution 5
Recall that ¢, 1pn — Pni1¢n = (—1)" and hence
(_1)n = Pn+19n — Qn+1Pn-
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Then, for every N > 0, we must have that

N n N N
3 =" _ S Pritds —dnlPn _ §SPuit Po_ Prel PO
n=0

Gndn+1 o In+1 4n 4ANt+1 4o '

i (=" 1; PN+1 Po Po
im — —— =x
Gndn+1  N—codny1 Qo do

n=0
But 2 = a9 = [z] =0 and z € (0,1).

Exercise 6 Pellish equations modulo p

If we want to find integer solutions to something like 22 —11y? = 14, continued
fractions are less helpful to us. We could use a same norm argument construct
a solution from solutions to

2 —11y* =2 and 22— 11y =7

but solving these is non-trivial. Working modulo various primes, at least lets
us check whether an integer solution is even possible. In fact, we can reduce
it to checking finitely many primes.

i) Show that, modulo any prime p # 11, there exist =,y € Z such that

2? — 11y* = 14 (mod p)

Hint: How many possible values in Z/pZ can x* take? How many pos-
sible values can 11y? + 14 take? Must the two sets of possible values
overlap?

ii) Give a necessary and sufficient condition for there to exist x,y € Z such
that
2? — 11y* = 14 (mod 7).

Determine if such a pair exist.

iii) Show that, for any integers d,n € Z and p 1 d, there exist z,y € Z such
that
2* —dy* =n (mod p)
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Remark 2. Using a variation on Hensel’s Lemma (from the second problem
sheet), you can show that for all odd primes p 1 d and p 1 n, there exists a
solution to

2% — dy* =n (mod p¥)

for all k > 1. If there exist solutions to

2* — dy* =n (mod p¥)
for all primes p and all k > 1, a result called the Hasse principle says that
there exist x,y € Q such that

2 —dy* =n

Combined with the results from above and some variations on Hensel’s
Lemma, you can reduce showing the existence of rational solutions to checking
for “nice” solutions in Z/pZ for the finitely many odd primes p such that
pldn, and a “nice” solution in Z/2*7 for some hopefully small k. Usually
k = 3 is good enough.

Solution 6

1. We know that the map

(Z/pZ)* — (Z/pZ)*

T — 2’
is 2-to-1, and hence takes p%l values. If we include 0, we see that the
map
Z/pZ — L] pZ
T 2’

takes 1%1 distinct values as x ranges over Z/pZ.

As 11 is invertible modulo p # 11, multiplication by 11 gives a bijection
Z/pZ — 1] pZ

and hence 11y? takes ’%1 distinct values as y ranges over Z/pZ. Sim-
ilarly, addition of 14 is also a bijection, and so 11y? + 14 takes 2t%

2
distinct values as y ranges over Z/pZ.
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If the ’%1 distinct possible values of 22 and the ’%1 distinct possible

values of 11y?+14 in Z/pZ did not have any common values, this would
implies there are 7%1 + 1%1 = p + 1 distinct elements in Z/pZ. But
Z/pZ is a set of size p, so this is impossible. Hence there must exist a
choice of x,y € Z/pZ such that

r? = 11y* 4+ 14 (mod p)

. The existence of such x,y is equivalent to being able to solve
7*=14=3 (mod 7)

which is in turn equivalent to

3
i
(51)
We can easily compute

(3)--6)--()-

so a solution does indeed exist.

2 7%1 distinct values as x ranges over Z/pZ. As

. Similarly to before, x
p 1 d, multiplication by d is a bijection, and so dy?+n takes ’%1 distinct

values as y ranges over Z/pZ.

Thus, by the same reasoning as in part (i), there must exist x,y € Z
such that
2? = dy* +n (mod p)

for every p 1 d.

Exercise 7 Approrimations

Without computing the convergents of the irrational in question, determine
whether the following rational approximations are convergents of the given
irrational «

1. \/iz%
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Hint: Try to bound the true value of |qov — p| above or below by taking a
close bound to «.

Solution 7
We will use that if |ga — p| < %}, then § is a convergent.

i) We need to check what [2v/2 — 3| is to the accuracy of 1 = 0.25.. As
V2~ 1414 > 1.4,

3-2v/2<3-28=02<025

3

and so § is a convergent.

ii) We need to check whether
1
8v40 - 20] < ¢

We have that 19
V40 =~ 6.324555 < 3

and so ]
20—3\/E>20—19:1>6

SO % is not a convergent.

iii) We have that VT2 ~ 8.48, and so 8.4 < V72 < 8.5. Hence
02=17—168>17—2V72>17—-17=0

and 0.2 < %, SO 177 is a convergent.
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iv) We know that 7 ~ 3.14, so 3.1 < 7w < 3.2. Hence
04="7(32)—22>|Tmr —22| <22-7(3.1) =0.7

neither of give a tight enough bound for us to say either way. Lets try
the bound of

1
7w — 22| < 7(3.15) — 22 = 0.05 < 0.07 < —

and so % is a convergent.

v) I know that e ~ 2.718, so 2.71 < e and hence

1
10e — 27| > 0.1 > —
10e | 50

SO % is not a convergent of e.

Exercise 8 Continued fractions for near-squares

We will now prove a formula for the continued fraction of n? + 1, and more
generally certain quadratic irrationals

i) Prove that v/n? + 1 is irrational for all n > 1

ii) Prove that if 22 = n? + 1 and z > 0, then

r = [n,z+n

iii) Hence show that

Vn2+1=[n,2n).

iv) Suppose that
2 4+br+c=0

has irrational roots f < 0 < «, and
2 +br+c—1
has integer roots t < 0 < s € Z, then
a=[s,s—1
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Solution 8

i)

ii)

iii)

If v/n? + 1 is rational, it must be an integer m. Then
m?—n?=1

and so
(m—n)(m+n)=1.

Since +1 are the only divisors of 1, and m,n are integers, we must have
m—-n=m-+n==+1

and hence n = —n, which implies n = 0. Hence, v/n? + 1 is irrational
foralln >1

If 22 =n%?+ 1, then

1
r—n= ,
xT+n
rT=n-+ .
T+n

Since x > 0, x +n > 1, and so we can use the extended notation for
continued fractions to write

r = [n,z+ n
x = v/n? + 1 is the positive solution to 2 = n? + 1, and as such satisfies
r = [n,z+ n

Hence

+n=2n+
r+n r+n

r+n=n++

and so
r+n=[2n,x+n]

which we can iterated to get
r+n=1[2n,x+n]=[2n,2n,x+n]=---[2n]

and hence

x = [n,x+n] = [n,2n].
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iv) Similarly to above, if 2% + bx + ¢ = 0, we must have that
(x—s)(x—t)=1

and hence

1

€r —

T = s+

=[s,z—t] = [s,s—t,x—t] = [s,s—t,s—t,x—t] = - =[s,s — 1

is a continued fraction expansion for one of the roots of 2% + bx + ¢, as
s —t > 0. Since f <0, and [s,s — {] > 0, we must have

a=lss—1
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