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Answers are due for Friday November 28°¢, 2pm.
The use of electronic calculators and computer algebra software is allowed.

Exercise 1 A yearly exercise

In the following, you may freely use the results of Exercises [0] and [§ to
determine irreducibles of prime norm p = 1 (mod 4), though it is probably
less efficient than trial and error for primes under 500.

1. (30 pts) Determine a factorisation into irreducibles of 20 + 25i.
2. (30 pts) Determine a factorisation into irreducibles of 20 + 48i.

3. (40 pts) Determine non-zero a,b € Z such that

8082 = a? + 2.


https://www.maths.tcd.ie/~keilthya/teaching/2025/NT/nt.html

Solution 1

1. We first note that that
20 + 251 = 5(4 + 5i).

Since N(4 + 5i) = 16 + 25 = 41, which is prime, (4 + 5¢) is irreducible.
Hence, it suffices to factorise

b= (241)(2—1).
Hence, a factorisation into irreducibles of 20 + 257 is
20 + 250 = (2+14)(2 —)(4 + 57).
Some other possible factorisations are given below for comparison

204247 = (1+424)(1—23) (44-51) = (1420)(2+4) (5—4i) = i(1+42i)(1—23)(5—4i)

2. We first note that
20 + 48i = 4(5 4+ 12i) = —(1 +4)*(5 + 121)

and we just have to factorise 5 4 12i. This has norm 52 + 122 = 169 =
132, and so
5 + 12: = V713,1713,2

for some irreducibles 31, m32 of norm 13, and a unit v. A pair
of non-associate irreducibles of norm 13 are given by 2 4+ 3i (these
are irreducible as they have prime norm). Up to changing v, we can
therefore assume

713,15, 77132 € {2 + 32, 2 — 32}

If w31 # ™32, then m31m32 = 13 divides 5 4 127, which is clearly
impossible. Hence m31 = m32. We can quickly check that

(2+3i)*> = -5+ 12i and (2 — 3i)*> = -5 — 12i
the latter of which is associate to 5 + 12¢. Thus

5412 = —(2 — 3i)?
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and hence

20 + 48i = (1 +i)*(2 — 3i)?
is a factorisation into irreducibles. Some alternative factorisations are
given below

20 4 48i = (1 — i)*(2 — 3i)? = —(1 4+ 9)*(3 + 2i)?

3. We can factorise 8082 = 2 x 9 x 449 into powers of primes. We have
that
2 =N(1+1) and 9 = N(3).

Thus, if we can write 337 as a norm, we are essentially done.

Given that 449 is relatively small, applying either of the Exercises men-
tioned seems like overkill, when we can quite quickly check all small
squares by hand (or just look at it). The squares less than or equal to
449 are

0,1, 4,9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400 441.
This leads us to

449 = 49 + 400 = 7% + 20* = N(7 + 20i).
Hence

8082 = N(3 x (1 +14) x (7 + 20i)) = N(—39 + 81i) = 39 + 812

This was the only exercise that you must submit before the
deadline. The following exercises are not mandatory; they are not
worth any points, and you do not have to submit them

However, I strongly encourage you to give them a try, as the best way to
learn number theory is through practice.

The exercises marked with a star are the exercises I will try to
talk about in the tutorial lecture. If there are any exercises would
would particularly like to discuss, please let me know

The exercises are arranged by theme, and roughly in order of difficulty
within each theme, with the first few working as good warm-ups, and the
remainder being of similar difficulty to the main exercise. You are welcome
to email me if you have any questions about them. The solutions will be
made available with the solution to the main exercise.



mailto:akeilthy@tcd.ie

Exercise 2 Division with remainder %

For the given «, § € Z][i], determine =, p € Z[i] such that

a = By +pand N(p) < N(B).
a=8+5i, B=2+3i,

1

111

a=12+37, 5 ="7+9i

)
i) a=1542i, f=4—1i,
)
iv)

a=19+93:, =4+ 5i.

Solution 2
i) We have that
o _8+5i _ (8+5)(2—3i) _ 31 —14i
B 243 13 13 13

Letting v = 2 — 7, we define
p=a—py=8+5i—(2+3i)(2—1)=8—-T+5i—4i=1+1
which has norm 2 < 13.

ii) We compute

a_15+2i_58+23@'N3+Z,
8 4—i 1T '

Letting v = 3 + ¢, we define
p=a—pPy=15+2{—13—-i=2+1
which has norm 5 < 17.

iii) We compute
a 12437 4174 151¢
— = = ~3+1

6] 7+ 9 130
Letting v = 3 + i, we define

p=a—Py=12437 —12 - 341 = 3

which has norm 9 < 130.



iv) We compute

a 194931 5414 27T 13 4 Ti
—_ = = ~ 1
I6; 4+ 51 41

Letting v = 13 + 77, we define
p=a—Py=19+93i —17—-93t =2

which has norm 4 < 41.

Exercise 3 Relative division

Let a,b € Z. We can consider these both as (classical) integers and as
Gaussian integers. We write a|zb if a divides b when viewed as integers, and
al zib when a divides b when viewed as Gaussian integers.

Show that a|zb if and only if a|z;b.

Solution 3

If a|zb, there exists ¢ € Z C Z[i] such that b = ac, so a|z;b. Conversely,
suppose there exists vy € Z[i| such that b = a7y. Letting v = ¢ + di, we have
that

b= ac+ adi

and hence ad = 0. If a = 0, then b = 0, and so a|zb. If a # 0, then d = 0,
and so b = ac, which means that a|zb.

Exercise 4 Bezout’s Theorem

For the given a, § € Zli], determine n, £ € Z[i] such that a&+(n is a greatest
common divisor of o and .

i) a=6+2i3=4+3i
i) o =4+6i, 3 =5+ 3i.



Solution 4
i) We apply Euclid’s algorithm:

6—1—2@'_30—102’N1
443 25 7
64+2i=4+3i+(2—1),
4 ; 10¢
+3‘z:5+ 02:1+22’.
2—1 5

Hence, ged(6 + 2i,4 + 3i) = 2 — i and

2 —i=06+2 — (4+30).

ii) We apply Euclid’s algorithm:

4+6i 38+ 18i
54+3i 34
446i=(1+14)(5+3i)+ (2 — 29),
5430 4416
2-2 8
5+3i=2i(2—2i)+ (1 —14),
2 —2i =2(1—1).

~1+1,

= 21,

Hence, ged(4 + 67,5+ 3i) = 1 — ¢ and

1—i="5+3i—2i(2— 21)
5430 —2i(4+6i — (1+)(5+ 3i))
= —2i(4+67) + (1 +2i —2)(5+ 3i)
= —2i(4 +67) + (=14 2¢)(5 + 3i).

Exercise 5 Complete factorisation %

Determine a complete factorisation into irreducibles of the following o € Z][i].
i) a=>5+3i,

i) o =8—1,

)
i) o = 13+ 94,
)

1) o« =19 + 123.



Solution 5
i) The norm of alpha is N(a) =25+ 9 = 34 = 2 x 17. Hence
o = U9y
for irreducibles of norms 2 and 17, respectively. Up to a unit, w17 = 1444
and so we must test divisibility:

O+3 17-17:

ATl Gl

and so
5430 =(1—14)(1+ 49)

is a factorisation into irreducibles.

ii) We compute N(«) = 65 =5 x 13. Hence
Q = VT5T13

for some irreducibles of norms 5 and 13. If we can determine which of
the two non-associate irreducibles 2 + ¢ or 2 — 4, of norm 5, divides «,
we are essentially done.

We check that _ ,
8—1 15—10¢ .
- = =3—-2
241 5

and hence
8—i=1(2+1)(3 —2i)

is a factorisation into irreducibles.
iii) N(a) =250 =2 x 5%. Thus
& = VT9T5 1752753

for a unit v, and irreducibles of norms 2 and 5. Since 5 1 13 + 9i, we
must have have that all the irreducibles of norm 5 are equal. We can

check ) )
13+97 35+ 57 )
— = =T7+1
241 5)




and so we can take w51 = M50 = M5 3 = 2+ 4. We can take mp = 1+,
and so it remains to determine v:
134 9¢ 134+ 9%

(1+4)(24+4)3 —9+13i

Thus
134 9i = —i(1+1)(2+1)°.
We could also have absorbed the unit into m by determining
1B3+9  13+9
(2+14)2 2+11i

giving an alternative factorisation

134 9i = (1 —1i)(2 +1)°.

T =

iv) N(a) = 505 = 5 x 101. Let us check if « is divisible by the irreducible

244
19+ 12¢ 50+ 5 )
— = =10+41
2+ 5

and hence
19 +12i = (244)(10 + 1)

is a factorisation into irreducibles.

Exercise 6 An answer to your prayers %

Let p be a prime number such that p = 1 (mod 4). We will give a partial

algorithm, the Hermite-Serret algorithm, to determine a,b € Z such that
2 4 2

p=a"+b".

i) Show that there exists ¢ € Z such that ¢* +1 =0 (mod p).

ii) Let m € Z[i] be an irreducible of norm p. Show that either 7 or 7 divides
¢+ 1.
iii) Hence conclude that if a + bi ~ ged(p, ¢ + 1), then a® + b* = p.
For odd p, we showed that 't = +1 (mod p) for every integer a. As
such, given a € 7Z such that o't =1 (mod p), forp=1 (mod 4), c = o't
gives us the input we need for this algorithm. Picking a at random, we

have a 1-in-2 change of finding such an a. This gives a remarkably efficient
algorithm, at least when implemented by a computer rather than a human.
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Solution 6

i)

ii)

iii)

Since p =1 (mod 4), (%) = (=1)"> = 1. As such, there exists ¢ € Z
such that ¢ = —1 (mod p), and so

>+ 1=0 (mod p)

We know that p|c? + 1, and p = 7 where both 7 and 7 are irreducible.
Hence

ml2 +1=(c+i)(c—1i)and T|c* + 1 = (c+i)(c — 7).
As 7 and T are irreducible, this means that
m|lc+ 1 or w|lc — i and T|c + ¢ or P|c — .

If both 7 and 7 divide the same factor, then 77 = p divides it, and so

one of § + % or ﬁ — % is a Gaussian integer. This is impossible, and so
either
mle+ i and T|e — 1
or
mlc — i and T|c + ¢
as needed.

As p = 7 is a factorisation into irreducibles, the divisors of p are
(associate to) 1, m, T and p. In particular, ged(p,c+ 1) is one of 1, m, T
or p. As p does not divide ¢ + i, and one of 7 or 7 does divide ¢ + i, we
must have that

ged(p,c+1i) =mor ged(p,c+1) =7

up to multiplication by a unit. In either case, ged(p, c+1) is an irreducible
of norm p. In particular, if a + bi is a ged(p, ¢ + 1), then a® + b* = p.

Exercise 7 An application of your prayers %

For each of the following primes p, use the results of Exercise [6] to determine
a,b € Z such that a? + b* = p.

i) p=13.



i) p = 29.
iii) p = 61.
iv) p = 337. Note that 189? = —1 (mod 337).
v) p = 1993. Note that 834%> = —1 (mod 1993)
Solution 7

i)

ii)

We need to find a square root of —1 modulo 13. The easiest option is
to note that 5% = 25 = 2(13) — 1, and so 5 works. Thus, it suffices to
compute ged(13,5 + 7). We will perform Euclid’s algorithm:

13 65—13i _
5+i 2 7
13=(5+1)(3)+ (-2 — 30),
541 —13+13i .
- = =—1+7,
-2 -3 13

and hence —2 — 3i is a ged. Thus 13 = 22 + 32

We need to find a square root of —1 modulo 29. As described below
Exercise [6| we will try to find a such that a'* = —1 (mod 29). Let us
try a = 2:

24 =16x322=16x9=19 x 3 =57 = —1 (mod 29)
and so ¢ =27 =32 x 4 = 12 (mod 29) gives us a choice of square root

of —1.
Now we must compute ged (29,12 + i):
20 348 — 29

1244 145
29 = (12 +1)(2) + 5 — 2i,

2,

1240 584 29
5—2 29

-4

and hence 29 = 22 + 52,
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iii) We need to find a square root of —1 modulo 61. It suffices to find a such
that ¢*® = —1 (mod 61). We will try a = 2:

20 = (2" =3"=3x20=—1 (mod 61)
and so we can take c given by
2" =8x3*=72=11 (mod 61).

So, it suffices to compute ged(61, 11 + ):

61 671 —11i _
11+45 122 7
61 = (114 14)(6) + (—5 — 61)

and we can stop there, noting that 61 = 52 + 62.

iv) We are given a square root of —1, so it suffices to compute ged(337, 189+
i):
337 63693 — 337i

189 +i 35722 7
337 = (189 +1)(2) + (—41 — 24),

189 +4 7751 — 3371

Aa+2 1685

189 + ¢ = (41 4 24)(5) + (=16 — 91)

and we can stop there, as 337 = 92 + 162.

v) We are given a square root of —1, so it suffices to compute ged(1993, 834+
i):
1993 1662162 — 8347
834+i 714026 7
1993 = (834 +4)(2) + (325 — 21),
834+ 271056 — 19931 ~3
325 — 21 105625 ’
834 +1i = (325 — 2i)(3) + (—141 + 79),
325 — 2i = (141 — 70)(2) + (43 4 124)

and we can stop there, as 1993 = 122 + 432,
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Exercise 8 Gauss on high

Let p = 4k + 1. Gauss showed that the integers a, b determined by

p p
—— < < =
2_&,6_2
and
_ @b (mod p) and b = a(2k)! (mod p)
a_2(k!)2 mod p) and b=a ' (mod p

satisfy a® 4+ b? = p. We will give a partial proof of this.
i) Show that, for all k£ > 1, % € 7.

Hint: What does % count? Why would this be even?
ii) Show that

(2k)! = (=1)*(4k)(4k — 1)(---)(2k + 1) (mod 4k + 1)

iii) Hence, show that (2k)!? = —1 (mod 4k + 1)
Hint: Recall Wilson’s theorem from an earlier exercise set. This says
that (p — 1)! = —1 (mod p).
iv) Hence conclude that
a®+b* =0 (mod p)
if

(mod p) and b = a(2k)! (mod p)

Solution 8
(2k)!

i) The ratio Gz 1s the binomial coefficient (2:), which counts the number
of ways of choosing k elements from a set of 2k. If X is a set of 2k > 0
elements, the subsets of X containing k elements, come in pairs (A4, X \
A), and hence there are an even number of such subsets. Thus %(2:) is
an integer.
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ii) For each 1 <r <2k, 4k+1—r= —r (mod 4k + 1), and hence

(—1)*(4k)(4k — 1)(-- )2k + 1) = [[ -4k + 1)

r=1

2k
= Hr = (2k)! (mod 4k + 1)
r=1

iii) We have that
(2k)1? = (2k)!x (—=1)%*(4k)(4k—1) - - - (2k+1) = (4k)! = —1 (mod 4k+1)
by Wilson’s theorem.

iv) For a and b as given

s o (20)1 (2K -1 I
a®+b = 207 T Ay 4(k;!)4+4(l<;!)4 =0 (mod 4k + 1)

as needed.

Exercise 9 Forcing a common factor

Let a, 5 € Z[i], and let ged(a, B) be a greatest common divisor of « and f.

i) Show that N(ged (e, 5))| ged(N(a), N(5)).

ii) Give an example of «, § such that

N(ged(e, 5)) < ged(N(a), N(8)).

iii) Suppose that ged(N(a),N(8)) = pis prime. Show that p # —1 (mod 4).

iv) Suppose that gcd(N(a), N(5)) = p. Show that at least one of
ged(a, B) or ged(a, )
1s not a unit.

v) Suppose that ged(N(«), N(5)) = n > 1. Show that at least one of

ged(av, B) or ged(a, B)

1s not a unit.
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Solution 9

i)

ii)

iii)

iv)

We know ged(a, #)|a and hence

N(ged(a, 8))| N(e),
and similarly

N(ged(a, 8))[N(B).
Hence

N(ged(e, 5))] ged(N(a), N(5)).

If we can find o and 8 that are coprime, with the same norm, we are
done. For example 2+ ¢ and 2 — ¢ are coprime: they are irreducible and
non associate, so much be coprime. Thus

N(ged(2 44,2 —14)) =1 <5 =ged(N(2+14),N(2 — 1))
as needed.

Recall that if p = —1 (mod 4), p is irreducible and hence p| N(«) implies
that p|a, and hence N(p) = p?| N(«). Similarly for 8. Thus,

p*lged(N(a),N(8)) = p
which is a contradiction. Thus, we must have p # —1 (mod 4).

Let p = m,m, be a factorisation of p into irreducibles. If p| N(v) then
is divisible by one of 7, or 7,. In particular, if

plged(N(a), N(5))

we must have that, swapping 7, and 7, if necessary, m,|a and one of
mp or 7, divides B. If m,|3, then m,| ged(a, ), and so ged(a, ) is not a
unit. If 7,|5, then m,|5. Hence 7,|gcd(a, ), and so ged(a, ) is not a
unit.

We did not use anything about ged(N(a), N(5)) other than being divis-
ible by a prime number not congruent to —1 (mod 4) in the previous
argument. Thus the same argument applies if such a prime divisor ex-
ists. If a prime divisor p = —1 (mod 4) exists, then, as in part (iii), p|a
and p|f and so p|ged(a, ), and so it is not a unit.

14



Exercise 10 Number of representations

Given n € N, how many ordered pairs of integers (r,s) are there such that
r? 4+ s = n? Ordered here means we consider (r, s) as distinct from (s, r).

i) Show that every (r, s) such that 72+ s? = n are in bijection with o € Z]i]
such that N(a) =n

ii) Fix an irreducible 7, for each prime p and let

n — 2% H pbp H ch.

p=1 (mod 4) g=—1 (mod 4)

Describe the factorisation into irreducibles of o € Z[i] such that N(«) =
n.

iii) Hence, determine the number of ordered pairs of integers (7, s) are there
such that r? + s? = n, in terms of a, by, c,.

Solution 10
i) It is quite clear that the map (r, s) — r + si gives the decided bijection.

ii) If ¢, is not even for some prime ¢ = —1 (mod 4), then so such « exists.
Otherwise, every such a can be written as

a=v(l+1i)" H mdver H q?

p=1 (mod p) ¢=—1 (mod p)
for some unit v, and integers d,, e, > 0 such that d, + e, = b,,.

iii) The number of such ordered pairs is equal to the number of Gaussian
integers of norm n. There are no such Gaussian integers if ¢, is odd
for any prime ¢ = —1 (mod 4). If ¢, is even for every prime ¢ = —1
(mod 4), then every such Gaussian integer is determined uniquely by
a choice of unit v (4 possibilities), and integers d,,e, > 0 such that
d, + e, = b, (b, + 1 possibilities) for each prime p =1 (mod 4). Hence,
the number of such ordered pairs is

0if ¢, =1 (mod 2) for some prime ¢ = —1 (mod 4),

411 o (bp+ 1) otherwise
p=1 (mod 4)
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Exercise 11 A FEuclidean failure

Define a subspace of C by

i)

ii)

iii)

iv)

vi)

vii)

ZIV=-3] == {a+ /=3 | a,b € Z}

Show that Z[y/—3] is a ring: it is closed under addition and multiplica-

tion. Define what it means for o € Z[/—3] to divide § € Z[/—3] in
this ring.

Define the norm of o = a + by/—3 by
N(a) = o = a® + 3b*
Show that the only elements of norm 1 are +1.

Suppose that given «, f € Z[v/—3| with § # 0, there exists v, p €
Z[\/—3] such that

o = By + p and N(p) < N(B).

Sketch an argument showing that if the only common divisors of a, 8 €

Z[/=3] are £1, then there exist n, v € Z[/—3] such that
no+vp =1.
Show that if «|3 for «, B € Z[/—3], then
N()|N(B)

Show that 2 does not divide 1 + +/—3 and 1 + v/—3 does not divide 2.
Hence conclude that if o € Z[v/—3] divides both 2 and 14++/—3, o = £1.

Show that there does not exist 1, ¢ € Z[v/—3| such that
M+ (1+v-=3)¢=1
Hint: Parity

Conclude that Euclidean division is not possible in Z[v/—3], i.e. given
a, B € Z[v—3] with § # 0, there does not necessarily exist v, p €
Z[/—3| such that

a = fy+pand N(p) < N(5).
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Solution 11

i)

ii)

iii)

iv)

The sum of two elements of Z[v/—3]| is clearly in Z[v/—3]. To see that
the product is an element of Z[v/—3], note that

(a+bv—=3)(c+ dv—3) = (ac — 3bd) + (ad + bec)v/—3 € Z]i]
for a,b,c,d € 7.
We say that «|3 if there exists v € Z[v/—3] such that 8 = a~.
Suppose N(a + by/—3) = 1. Then
1 =a%+3b* > d%
Hence a € {0,+1}. If a = +1, then we must have b = 0. If a = 0, and
b =0, then N(a + by/—3) = 0 # 1, but if b # 0, then
N(by/=3) = 30> >3 > 1.
Thus, if N(a) =1, o = £1.

It is easy to see that N(«a) = 0 if and only if @ = 0. Similarly to the case
of Gaussian integers, if o = v + p, then

Div(a, ) = Div(5, p).

As N(p) < N(B), we can execute the Euclidean algorithm, which must
eventually terminate as the norm of the remainders is a strictly de-
creasing sequence of non-negative integers. In particular, if the only
common divisors of a and [ are 41, then one of the remainders must be
+1. Running Euclid’s algorithm backwards, we construct 1, & € Z[v/—3]
such that

an + fn = £1.

We can ensure this is equal to 1 by sending (1, £) +— (—n, —¢) if necessary.
If «|f, there exists v € Z[v/—3] such that
3 = ary and hence 3 = a7.

Thus _
N(B) = BB = ayay = N(a) N(y)
which implies that N(«)|N(3).
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v)

vi)

vii)

As N(2) = N(1++/—3) = 4, if one of them divides the other, the quotient
must have norm 1, and hence is equal to =1, which is clearly not true.

If a is a common divisor, then it must have norm dividing N(2) =
N(1 + v/—3) = 4. By direct inspection,

a’+ 3> =2

has no integer solutions, and so there are no elements of norm 2. Simi-
larly, the only solutions to

a’ +3b* =4

are (£2,0) and (+1,+£1), the only elements of norm 4 are +2 and
+1 + +/—3, which cannot be common divisors, by essential the same
arguments as before.

Suppose there exist a, b, ¢,d € Z such that
26+ b0v-3)+(1+vV-=3)(c+dv-3)=1.

This is equivalent to
(2a+c—3d)+ (b+c+d)v—-3=1

and hence
20+c—3d=1and 2b +c+d=0

Considering these modulo 2, we must have
c+d=1 (mod 2) and c+d =0 (mod 2)

which is impossible. Hence, so such a, b, ¢,d € Z exist, and therefore no
such n, & € Z[/—3| exists.

From parts (iii) and (v), if Euclidean division exists, there exist n,{ €
Z[/—3| such that
M+ (1+v-=3)¢=1

Part (vi) says no such 7, £ exist. Thus, Euclidean division is not possible.
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Exercise 12 Steps towards four squares - Quite hard

Recall that the quaternions
H={a+bi+cj+dk|abcdeR}
is equipped with multiplication determined by
i?=j2=k*=ijk=—1.
Define Hy to be the subset of H consisting of
a+bi+cj+dk
such that either a,b,c,d € Z or a — %,b— %,c— %,d— % €.
i) Show that Hy is closed under addition and multiplication
ii) Show that the norm
N(a + bi + ¢j + dk) := (a + bi + ¢j + dk)(a — bi — ¢j — dk)
takes integer values.
iii) Show that N(«af) = N(a) N(p) for all af € Hy.

iv) Show that, for any a,b, c,d € Z, there exist A, B,C, D € Z such that

1\? 1)? 1\? 1\?
A+B*+C*+D’=(a+z | +(b+z) +(c+z) +(d+3

2 2 2 2
Hint: For any a € 7, there exists a’ € 7 such that a + % =2d + % This
means we can write the right hand side as the norm of

2a/ + 2b'i + 27§ + 2d'k +w

for a quaternion w of norm 1.

Can we write the right hand side in the form awwa ?

With these results, to prove Lagrange’s 4-squares theorem, we just need
to prove that every prime is a norm of an element of Hy,.
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Solution 12

i) Hy is clearly closed under addition. We have that

(a+bi+ cj+dk)(e+ fi+ gj+ hk)
=r +yi+ zj + wk

where

xr=ae—bf —cg— dh,

y=af + be+ ch —dg,

2z = ag + ce — bh + df,

w = ah + de 4+ bg — cf.
We then have to manually check every possibility. If a,b,c,d,e, f,g,h €
Z, then x,y, z,w € Z.
In the product

(a+bi+cj+dk)(e—|—%+(f+%)i+(g+%)j—l—(h+%)k)

each of x,y, z, w is an integer plus one of

atbtetd
2

which are either all integers, or all an integer plus %

In the product

(a+%+(b+%)i+(c+%)j+(d+%)k)(e+%+(f+%)i+(g+%)j+(h+%)k)

each of z,y, z, w is of the form

v atbEeddEetfrgrh 1 1 1 1
2 1717173
thtcetdtet frgth
=N+1+° ‘ 26 J£9

so some integer N, and we again obtain that either z,y,z,w € Z or
T, Y, 2, W EZ+%.
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ii)

iii)

iv)

Note that
N(a)=ad*+ b+ +d* € Z

for
a=a+bi+cj+dk.

if a,b,c,d € Z. Similarly, for

1 1 1 1
_ 1 1. 1. L
e! a+2+(b+2)1+(c+2)J+(d+2)
we get
N@)=a*+b+ +d*+a+b+tc+d+1€Z.
Oh dear:

2?4y + 22+ w? =d’e® + b’ f? + g + d°h?
+(l2f2+b2€2+02h2+d2g2
+a’g® + Pe® + VPP + d° f?
+a2h2+d262+b292+02f2

=@+ +E+B) e+ fP+g*+h?)

as all the cross terms magically cancel.

The right hand side is

N(a+%+(b+%)i+(c+%)j+(d+%)k).

As noted in the hint, we can rewrite this as

N (2a + 2bi + 2¢j + 2dk + w)
where we have dropped the primes. Let

a = 2a + 2bi + 2¢j + 2dk + w.

Then, as ww =1
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Hence, it would suffice to show that atw has integer coefficients. But

aw=2(a+bi+cj+dk)w+1
iliiijik)
+1
2
—(a+bit+cj+dk)(F1+itjEtk)+1

:2(a+bi+cj+dk)(

which has integer coefficients! Thus we are done!
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