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Answers are due for Friday November 28nd, 2pm.
The use of electronic calculators and computer algebra software is allowed.

Exercise 1 A yearly exercise

In the following, you may freely use the results of Exercises 6 and 8 to
determine irreducibles of prime norm p ≡ 1 (mod 4), though it is probably
less efficient than trial and error for primes under 500.

1. (30 pts) Determine a factorisation into irreducibles of 20 + 25i.

2. (30 pts) Determine a factorisation into irreducibles of 20 + 48i.

3. (40 pts) Determine non-zero a, b ∈ Z such that

8082 = a2 + b2.
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Solution 1

1. We first note that that

20 + 25i = 5(4 + 5i).

Since N(4 + 5i) = 16 + 25 = 41, which is prime, (4 + 5i) is irreducible.
Hence, it suffices to factorise

5 = (2 + i)(2− i).

Hence, a factorisation into irreducibles of 20 + 25i is

20 + 25i = (2 + i)(2− i)(4 + 5i).

Some other possible factorisations are given below for comparison

20+24i = (1+2i)(1−2i)(4+5i) = (1+2i)(2+i)(5−4i) = i(1+2i)(1−2i)(5−4i)

2. We first note that

20 + 48i = 4(5 + 12i) = −(1 + i)4(5 + 12i)

and we just have to factorise 5 + 12i. This has norm 52 + 122 = 169 =
132, and so

5 + 12i = νπ13,1π13,2

for some irreducibles π13,1, π13,2 of norm 13, and a unit ν. A pair
of non-associate irreducibles of norm 13 are given by 2 ± 3i (these
are irreducible as they have prime norm). Up to changing ν, we can
therefore assume

π13,1, π13,2 ∈ {2 + 3i, 2− 3i}.

If π13,1 ̸= π13,2, then π13,1π13,2 = 13 divides 5 + 12i, which is clearly
impossible. Hence π13,1 = π13,2. We can quickly check that

(2 + 3i)2 = −5 + 12i and (2− 3i)2 = −5− 12i

the latter of which is associate to 5 + 12i. Thus

5 + 12i = −(2− 3i)2
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and hence
20 + 48i = (1 + i)4(2− 3i)2

is a factorisation into irreducibles. Some alternative factorisations are
given below

20 + 48i = (1− i)4(2− 3i)2 = −(1 + i)4(3 + 2i)2

3. We can factorise 8082 = 2 × 9 × 449 into powers of primes. We have
that

2 = N(1 + i) and 9 = N(3).

Thus, if we can write 337 as a norm, we are essentially done.

Given that 449 is relatively small, applying either of the Exercises men-
tioned seems like overkill, when we can quite quickly check all small
squares by hand (or just look at it). The squares less than or equal to
449 are

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400 441.

This leads us to

449 = 49 + 400 = 72 + 202 = N(7 + 20i).

Hence

8082 = N(3× (1 + i)× (7 + 20i)) = N(−39 + 81i) = 392 + 812

This was the only exercise that you must submit before the
deadline. The following exercises are not mandatory; they are not
worth any points, and you do not have to submit them

However, I strongly encourage you to give them a try, as the best way to
learn number theory is through practice.

The exercises marked with a star are the exercises I will try to
talk about in the tutorial lecture. If there are any exercises would
would particularly like to discuss, please let me know

The exercises are arranged by theme, and roughly in order of difficulty
within each theme, with the first few working as good warm-ups, and the
remainder being of similar difficulty to the main exercise. You are welcome
to email me if you have any questions about them. The solutions will be
made available with the solution to the main exercise.
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Exercise 2 Division with remainder ⋆

For the given α, β ∈ Z[i], determine γ, ρ ∈ Z[i] such that

α = βγ + ρ and N(ρ) < N(β).

i) α = 8 + 5i, β = 2 + 3i,

ii) α = 15 + 2i, β = 4− i,

iii) α = 12 + 37i, β = 7 + 9i

iv) α = 19 + 93i, β = 4 + 5i.

Solution 2

i) We have that

α

β
=

8 + 5i

2 + 3i
=

(8 + 5i)(2− 3i)

13
=

31

13
+

−14i

13
≈ 2− i.

Letting γ = 2− i, we define

ρ = α− βγ = 8 + 5i− (2 + 3i)(2− i) = 8− 7 + 5i− 4i = 1 + i

which has norm 2 < 13.

ii) We compute
α

β
=

15 + 2i

4− i
=

58 + 23i

17
≈ 3 + i.

Letting γ = 3 + i, we define

ρ = α− βγ = 15 + 2i− 13− i = 2 + i

which has norm 5 < 17.

iii) We compute
α

β
=

12 + 37i

7 + 9i
=

417 + 151i

130
≈ 3 + i

Letting γ = 3 + i, we define

ρ = α− βγ = 12 + 37i− 12− 34i = 3i

which has norm 9 < 130.
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iv) We compute

α

β
=

19 + 93i

4 + 5i
=

541 + 277i

41
≈ 13 + 7i

Letting γ = 13 + 7i, we define

ρ = α− βγ = 19 + 93i− 17− 93i = 2

which has norm 4 < 41.

Exercise 3 Relative division

Let a, b ∈ Z. We can consider these both as (classical) integers and as
Gaussian integers. We write a|Zb if a divides b when viewed as integers, and
a|Z[i]b when a divides b when viewed as Gaussian integers.

Show that a|Zb if and only if a|Z[i]b.

Solution 3

If a|Zb, there exists c ∈ Z ⊂ Z[i] such that b = ac, so a|Z[i]b. Conversely,
suppose there exists γ ∈ Z[i] such that b = aγ. Letting γ = c + di, we have
that

b = ac+ adi

and hence ad = 0. If a = 0, then b = 0, and so a|Zb. If a ̸= 0, then d = 0,
and so b = ac, which means that a|Zb.

Exercise 4 Bezout’s Theorem

For the given α, β ∈ Z[i], determine η, ξ ∈ Z[i] such that αξ+βη is a greatest
common divisor of α and β.

i) α = 6 + 2i, β = 4 + 3i,

ii) α = 4 + 6i, β = 5 + 3i.
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Solution 4

i) We apply Euclid’s algorithm:

6 + 2i

4 + 3i
=

30− 10i

25
≈ 1,

6 + 2i = 4 + 3i+ (2− i),

4 + 3i

2− i
=

5 + 10i

5
= 1 + 2i.

Hence, gcd(6 + 2i, 4 + 3i) = 2− i and

2− i = 6 + 2i− (4 + 3i).

ii) We apply Euclid’s algorithm:

4 + 6i

5 + 3i
=

38 + 18i

34
≈ 1 + i,

4 + 6i = (1 + i)(5 + 3i) + (2− 2i),

5 + 3i

2− 2i
=

4 + 16i

8
≈ 2i,

5 + 3i = 2i(2− 2i) + (1− i),

2− 2i = 2(1− i).

Hence, gcd(4 + 6i, 5 + 3i) = 1− i and

1− i = 5 + 3i− 2i(2− 2i)

5 + 3i− 2i(4 + 6i− (1 + i)(5 + 3i))

= −2i(4 + 6i) + (1 + 2i− 2)(5 + 3i)

= −2i(4 + 6i) + (−1 + 2i)(5 + 3i).

Exercise 5 Complete factorisation ⋆

Determine a complete factorisation into irreducibles of the following α ∈ Z[i].

i) α = 5 + 3i,

ii) α = 8− i,

iii) α = 13 + 9i,

iv) α = 19 + 12i.
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Solution 5

i) The norm of alpha is N(α) = 25 + 9 = 34 = 2× 17. Hence

α = νπ2π17

for irreducibles of norms 2 and 17, respectively. Up to a unit, π17 = 1±4i
and so we must test divisibility:

5 + 3i

1 + 4i
=

17− 17i

17
= (1− i)

and so
5 + 3i = (1− i)(1 + 4i)

is a factorisation into irreducibles.

ii) We compute N(α) = 65 = 5× 13. Hence

α = νπ5π13

for some irreducibles of norms 5 and 13. If we can determine which of
the two non-associate irreducibles 2 + i or 2 − i, of norm 5, divides α,
we are essentially done.

We check that
8− i

2 + i
=

15− 10i

5
= 3− 2i

and hence
8− i = (2 + i)(3− 2i)

is a factorisation into irreducibles.

iii) N(α) = 250 = 2× 53. Thus

α = νπ2π5,1π5,2π5,3

for a unit ν, and irreducibles of norms 2 and 5. Since 5 ∤ 13 + 9i, we
must have have that all the irreducibles of norm 5 are equal. We can
check

13 + 9i

2 + i
=

35 + 5i

5
= 7 + i
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and so we can take π5,1 = π5,2 = π5,3 = 2 + i. We can take π2 = 1 + i,
and so it remains to determine ν:

ν =
13 + 9i

(1 + i)(2 + i)3
=

13 + 9i

−9 + 13i
= −i.

Thus
13 + 9i = −i(1 + i)(2 + i)3.

We could also have absorbed the unit into π2 by determining

π2 =
13 + 9i

(2 + i)3
=

13 + 9i

2 + 11i
= 1− i

giving an alternative factorisation

13 + 9i = (1− i)(2 + i)3.

iv) N(α) = 505 = 5 × 101. Let us check if α is divisible by the irreducible
2 + i:

19 + 12i

2 + i
=

50 + 5i

5
= 10 + i

and hence
19 + 12i = (2 + i)(10 + i)

is a factorisation into irreducibles.

Exercise 6 An answer to your prayers ⋆

Let p be a prime number such that p ≡ 1 (mod 4). We will give a partial
algorithm, the Hermite-Serret algorithm, to determine a, b ∈ Z such that
p = a2 + b2.

i) Show that there exists c ∈ Z such that c2 + 1 ≡ 0 (mod p).

ii) Let π ∈ Z[i] be an irreducible of norm p. Show that either π or π divides
c+ i.

iii) Hence conclude that if a+ bi ∼ gcd(p, c+ i), then a2 + b2 = p.

For odd p, we showed that a
p−1
2 ≡ ±1 (mod p) for every integer a. As

such, given a ∈ Z such that a
p−1
2 ≡ −1 (mod p), for p ≡ 1 (mod 4), c ≡ a

p−1
4

gives us the input we need for this algorithm. Picking a at random, we
have a 1-in-2 change of finding such an a. This gives a remarkably efficient
algorithm, at least when implemented by a computer rather than a human.
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Solution 6

i) Since p ≡ 1 (mod 4),
(

−1
p

)
= (−1)

p−1
2 = 1. As such, there exists c ∈ Z

such that c2 ≡ −1 (mod p), and so

c2 + 1 ≡ 0 (mod p)

ii) We know that p|c2 + 1, and p = ππ where both π and π are irreducible.
Hence

π|c2 + 1 = (c+ i)(c− i) and π|c2 + 1 = (c+ i)(c− i).

As π and π are irreducible, this means that

π|c+ i or π|c− i and π|c+ i or p|c− i.

If both π and π divide the same factor, then ππ = p divides it, and so
one of c

p
+ i

p
or c

p
− i

p
is a Gaussian integer. This is impossible, and so

either
π|c+ i and π|c− i

or
π|c− i and π|c+ i

as needed.

iii) As p = ππ is a factorisation into irreducibles, the divisors of p are
(associate to) 1, π, π and p. In particular, gcd(p, c+ i) is one of 1, π, π
or p. As p does not divide c+ i, and one of π or π does divide c+ i, we
must have that

gcd(p, c+ i) = π or gcd(p, c+ i) = π

up to multiplication by a unit. In either case, gcd(p, c+i) is an irreducible
of norm p. In particular, if a+ bi is a gcd(p, c+ i), then a2 + b2 = p.

Exercise 7 An application of your prayers ⋆

For each of the following primes p, use the results of Exercise 6 to determine
a, b ∈ Z such that a2 + b2 = p.

i) p = 13.
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ii) p = 29.

iii) p = 61.

iv) p = 337. Note that 1892 ≡ −1 (mod 337).

v) p = 1993. Note that 8342 ≡ −1 (mod 1993)

Solution 7

i) We need to find a square root of −1 modulo 13. The easiest option is
to note that 52 = 25 = 2(13) − 1, and so 5 works. Thus, it suffices to
compute gcd(13, 5 + i). We will perform Euclid’s algorithm:

13

5 + i
=

65− 13i

26
≈ 3,

13 = (5 + i)(3) + (−2− 3i),

5 + i

−2− 3i
=

−13 + 13i

13
= −1 + i,

and hence −2− 3i is a gcd. Thus 13 = 22 + 32.

ii) We need to find a square root of −1 modulo 29. As described below
Exercise 6, we will try to find a such that a14 ≡ −1 (mod 29). Let us
try a = 2:

214 ≡ 16× 322 ≡ 16× 9 ≡ 19× 3 ≡ 57 ≡ −1 (mod 29)

and so c ≡ 27 ≡ 32 × 4 ≡ 12 (mod 29) gives us a choice of square root
of −1.

Now we must compute gcd(29, 12 + i):

29

12 + i
=

348− 29i

145
≈ 2,

29 = (12 + i)(2) + 5− 2i,

12 + i

5− 2i
=

58 + 29i

29
= 2 + i,

and hence 29 = 22 + 52.
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iii) We need to find a square root of −1 modulo 61. It suffices to find a such
that a30 ≡ −1 (mod 61). We will try a = 2:

230 ≡ (26)5 ≡ 35 ≡ 3× 20 ≡ −1 (mod 61)

and so we can take c given by

215 ≡ 8× 32 ≡ 72 ≡ 11 (mod 61).

So, it suffices to compute gcd(61, 11 + i):

61

11 + i
=

671− 11i

122
≈ 6,

61 = (11 + i)(6) + (−5− 6i)

and we can stop there, noting that 61 = 52 + 62.

iv) We are given a square root of −1, so it suffices to compute gcd(337, 189+
i):

337

189 + i
=

63693− 337i

35722
≈ 2,

337 = (189 + i)(2) + (−41− 2i),

189 + i

41 + 2i
=

7751− 337i

1685
≈ 5,

189 + i = (41 + 2i)(5) + (−16− 9i)

and we can stop there, as 337 = 92 + 162.

v) We are given a square root of−1, so it suffices to compute gcd(1993, 834+
i):

1993

834 + i
=

1662162− 834i

714026
≈ 2,

1993 = (834 + i)(2) + (325− 2i),

834 + i

325− 2i
=

271056− 1993i

105625
≈ 3,

834 + i = (325− 2i)(3) + (−141 + 7i),

325− 2i = (141− 7i)(2) + (43 + 12i)

and we can stop there, as 1993 = 122 + 432.
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Exercise 8 Gauss on high

Let p = 4k + 1. Gauss showed that the integers a, b determined by

−p

2
≤ a, b ≤ p

2

and

a ≡ (2k)!

2(k!)2
(mod p) and b ≡ a(2k)! (mod p)

satisfy a2 + b2 = p. We will give a partial proof of this.

i) Show that, for all k ≥ 1, (2k)!
2(k!)2

∈ Z.

Hint: What does (2k)!
(k!)2

count? Why would this be even?

ii) Show that

(2k)! ≡ (−1)2k(4k)(4k − 1)(· · · )(2k + 1) (mod 4k + 1)

iii) Hence, show that (2k)!2 ≡ −1 (mod 4k + 1)

Hint: Recall Wilson’s theorem from an earlier exercise set. This says
that (p− 1)! ≡ −1 (mod p).

iv) Hence conclude that
a2 + b2 ≡ 0 (mod p)

if

a ≡ (2k)!

2(k!)2
(mod p) and b ≡ a(2k)! (mod p)

Solution 8

i) The ratio (2k)!
(k!)2

is the binomial coefficient
(
2k
k

)
, which counts the number

of ways of choosing k elements from a set of 2k. If X is a set of 2k > 0
elements, the subsets of X containing k elements, come in pairs (A,X \
A), and hence there are an even number of such subsets. Thus 1

2

(
2k
k

)
is

an integer.
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ii) For each 1 ≤ r ≤ 2k, 4k + 1− r ≡ −r (mod 4k + 1), and hence

(−1)2k(4k)(4k − 1)(· · · )(2k + 1) ≡
2k∏
r=1

−(4k + 1− r)

≡
2k∏
r=1

r ≡ (2k)! (mod 4k + 1)

iii) We have that

(2k)!2 ≡ (2k)!×(−1)2k(4k)(4k−1) · · · (2k+1) ≡ (4k)! ≡ −1 (mod 4k+1)

by Wilson’s theorem.

iv) For a and b as given

a2 + b2 ≡ (2k)!2

4(k!)4
+

(2k)!4

4(k!)4
≡ −1

4(k!)4
+

1

4(k!)4
≡ 0 (mod 4k + 1)

as needed.

Exercise 9 Forcing a common factor

Let α, β ∈ Z[i], and let gcd(α, β) be a greatest common divisor of α and β.

i) Show that N(gcd(α, β))| gcd(N(α),N(β)).

ii) Give an example of α, β such that

N(gcd(α, β)) < gcd(N(α),N(β)).

iii) Suppose that gcd(N(α),N(β)) = p is prime. Show that p ̸≡ −1 (mod 4).

iv) Suppose that gcd(N(α),N(β)) = p. Show that at least one of

gcd(α, β) or gcd(α, β)

is not a unit.

v) Suppose that gcd(N(α),N(β)) = n > 1. Show that at least one of

gcd(α, β) or gcd(α, β)

is not a unit.
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Solution 9

i) We know gcd(α, β)|α and hence

N(gcd(α, β))|N(α),

and similarly
N(gcd(α, β))|N(β).

Hence
N(gcd(α, β))| gcd(N(α),N(β)).

ii) If we can find α and β that are coprime, with the same norm, we are
done. For example 2 + i and 2− i are coprime: they are irreducible and
non associate, so much be coprime. Thus

N(gcd(2 + i, 2− i)) = 1 < 5 = gcd(N(2 + i),N(2− i))

as needed.

iii) Recall that if p ≡ −1 (mod 4), p is irreducible and hence p|N(α) implies
that p|α, and hence N(p) = p2|N(α). Similarly for β. Thus,

p2| gcd(N(α),N(β)) = p

which is a contradiction. Thus, we must have p ̸≡ −1 (mod 4).

iv) Let p = πpπp be a factorisation of p into irreducibles. If p|N(γ) then γ
is divisible by one of πp or πp. In particular, if

p| gcd(N(α),N(β))

we must have that, swapping πp and πp if necessary, πp|α and one of
πp or πp divides β. If πp|β, then πp| gcd(α, β), and so gcd(α, β) is not a
unit. If πp|β, then πp|β. Hence πp| gcd(α, β), and so gcd(α, β) is not a
unit.

v) We did not use anything about gcd(N(α),N(β)) other than being divis-
ible by a prime number not congruent to −1 (mod 4) in the previous
argument. Thus the same argument applies if such a prime divisor ex-
ists. If a prime divisor p ≡ −1 (mod 4) exists, then, as in part (iii), p|α
and p|β and so p| gcd(α, β), and so it is not a unit.
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Exercise 10 Number of representations

Given n ∈ N, how many ordered pairs of integers (r, s) are there such that
r2 + s2 = n? Ordered here means we consider (r, s) as distinct from (s, r).

i) Show that every (r, s) such that r2+s2 = n are in bijection with α ∈ Z[i]
such that N(α) = n

ii) Fix an irreducible πp for each prime p and let

n = 2a
∏

p≡1 (mod 4)

pbp
∏

q≡−1 (mod 4)

qcq .

Describe the factorisation into irreducibles of α ∈ Z[i] such that N(α) =
n.

iii) Hence, determine the number of ordered pairs of integers (r, s) are there
such that r2 + s2 = n, in terms of a, bp, cq.

Solution 10

i) It is quite clear that the map (r, s) 7→ r+ si gives the decided bijection.

ii) If cq is not even for some prime q ≡ −1 (mod 4), then so such α exists.
Otherwise, every such α can be written as

α = ν(1 + i)a
∏

p≡1 (mod p)

πdp
p πep

p

∏
q≡−1 (mod p)

q
cq
2

for some unit ν, and integers dp, ep ≥ 0 such that dp + ep = bp.

iii) The number of such ordered pairs is equal to the number of Gaussian
integers of norm n. There are no such Gaussian integers if cq is odd
for any prime q ≡ −1 (mod 4). If cq is even for every prime q ≡ −1
(mod 4), then every such Gaussian integer is determined uniquely by
a choice of unit ν (4 possibilities), and integers dp, ep ≥ 0 such that
dp + ep = bp (bp + 1 possibilities) for each prime p ≡ 1 (mod 4). Hence,
the number of such ordered pairs is0 if cq ≡ 1 (mod 2) for some prime q ≡ −1 (mod 4),

4
∏

p|n
p≡1 (mod 4)

(bp + 1) otherwise
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Exercise 11 A Euclidean failure

Define a subspace of C by

Z[
√
−3] := {a+ b

√
−3 | a, b ∈ Z}

i) Show that Z[
√
−3] is a ring: it is closed under addition and multiplica-

tion. Define what it means for α ∈ Z[
√
−3] to divide β ∈ Z[

√
−3] in

this ring.

ii) Define the norm of α = a+ b
√
−3 by

N(α) = αα = a2 + 3b2

Show that the only elements of norm 1 are ±1.

iii) Suppose that given α, β ∈ Z[
√
−3] with β ̸= 0, there exists γ, ρ ∈

Z[
√
−3] such that

α = βγ + ρ and N(ρ) < N(β).

Sketch an argument showing that if the only common divisors of α, β ∈
Z[
√
−3] are ±1, then there exist η, ν ∈ Z[

√
−3] such that

ηα+ νβ = 1.

iv) Show that if α|β for α, β ∈ Z[
√
−3], then

N(α)|N(β)

v) Show that 2 does not divide 1 +
√
−3 and 1 +

√
−3 does not divide 2.

Hence conclude that if α ∈ Z[
√
−3] divides both 2 and 1+

√
−3, α = ±1.

vi) Show that there does not exist η, ξ ∈ Z[
√
−3] such that

2η + (1 +
√
−3)ξ = 1

Hint: Parity

vii) Conclude that Euclidean division is not possible in Z[
√
−3], i.e. given

α, β ∈ Z[
√
−3] with β ̸= 0, there does not necessarily exist γ, ρ ∈

Z[
√
−3] such that

α = βγ + ρ and N(ρ) < N(β).
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Solution 11

i) The sum of two elements of Z[
√
−3] is clearly in Z[

√
−3]. To see that

the product is an element of Z[
√
−3], note that

(a+ b
√
−3)(c+ d

√
−3) = (ac− 3bd) + (ad+ bc)

√
−3 ∈ Z[i]

for a, b, c, d ∈ Z.
We say that α|β if there exists γ ∈ Z[

√
−3] such that β = αγ.

ii) Suppose N(a+ b
√
−3) = 1. Then

1 = a2 + 3b2 ≥ a2.

Hence a ∈ {0,±1}. If a = ±1, then we must have b = 0. If a = 0, and
b = 0, then N(a+ b

√
−3) = 0 ̸= 1, but if b ̸= 0, then

N(b
√
−3) = 3b2 ≥ 3 > 1.

Thus, if N(α) = 1, α = ±1.

iii) It is easy to see that N(α) = 0 if and only if α = 0. Similarly to the case
of Gaussian integers, if α = βγ + ρ, then

Div(α, β) = Div(β, ρ).

As N(ρ) < N(β), we can execute the Euclidean algorithm, which must
eventually terminate as the norm of the remainders is a strictly de-
creasing sequence of non-negative integers. In particular, if the only
common divisors of α and β are ±1, then one of the remainders must be
±1. Running Euclid’s algorithm backwards, we construct η, ξ ∈ Z[

√
−3]

such that
αη + βη = ±1.

We can ensure this is equal to 1 by sending (η, ξ) 7→ (−η,−ξ) if necessary.

iv) If α|β, there exists γ ∈ Z[
√
−3] such that

β = αγ and hence β = αγ.

Thus
N(β) = ββ = αγαγ = N(α)N(γ)

which implies that N(α)|N(β).
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v) As N(2) = N(1+
√
−3) = 4, if one of them divides the other, the quotient

must have norm 1, and hence is equal to ±1, which is clearly not true.

If α is a common divisor, then it must have norm dividing N(2) =
N(1 +

√
−3) = 4. By direct inspection,

a2 + 3b2 = 2

has no integer solutions, and so there are no elements of norm 2. Simi-
larly, the only solutions to

a2 + 3b2 = 4

are (±2, 0) and (±1,±1), the only elements of norm 4 are ±2 and
±1 ±

√
−3, which cannot be common divisors, by essential the same

arguments as before.

vi) Suppose there exist a, b, c, d ∈ Z such that

2(a+ b
√
−3) + (1 +

√
−3)(c+ d

√
−3) = 1.

This is equivalent to

(2a+ c− 3d) + (b+ c+ d)
√
−3 = 1

and hence
2a+ c− 3d = 1 and 2b+ c+ d = 0

Considering these modulo 2, we must have

c+ d ≡ 1 (mod 2) and c+ d ≡ 0 (mod 2)

which is impossible. Hence, so such a, b, c, d ∈ Z exist, and therefore no
such η, ξ ∈ Z[

√
−3] exists.

vii) From parts (iii) and (v), if Euclidean division exists, there exist η, ξ ∈
Z[
√
−3] such that

2η + (1 +
√
−3)ξ = 1

Part (vi) says no such η, ξ exist. Thus, Euclidean division is not possible.
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Exercise 12 Steps towards four squares - Quite hard

Recall that the quaternions

H = {a+ bi+ cj+ dk | a, b, c, d ∈ R}

is equipped with multiplication determined by

i2 = j2 = k2 = ijk = −1.

Define HZ to be the subset of H consisting of

a+ bi+ cj+ dk

such that either a, b, c, d ∈ Z or a− 1
2
, b− 1

2
, c− 1

2
, d− 1

2
∈ Z.

i) Show that HZ is closed under addition and multiplication

ii) Show that the norm

N(a+ bi+ cj+ dk) := (a+ bi+ cj+ dk)(a− bi− cj− dk)

takes integer values.

iii) Show that N(αβ) = N(α)N(β) for all αβ ∈ HZ.

iv) Show that, for any a, b, c, d ∈ Z, there exist A,B,C,D ∈ Z such that

A2 +B2 + C2 +D2 =

(
a+

1

2

)2

+

(
b+

1

2

)2

+

(
c+

1

2

)2

+

(
d+

1

2

)2

Hint: For any a ∈ Z, there exists a′ ∈ Z such that a+ 1
2
= 2a′ ± 1

2
. This

means we can write the right hand side as the norm of

2a′+ 2b′i+ 2c′j+ 2d′k+ ω

for a quaternion ω of norm 1.

Can we write the right hand side in the form αωωα?

With these results, to prove Lagrange’s 4-squares theorem, we just need
to prove that every prime is a norm of an element of HZ.
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Solution 12

i) HZ is clearly closed under addition. We have that

(a+ bi+ cj+ dk)(e+ f i+ gj+ hk)

=x+ yi+ zj+ wk

where

x = ae− bf − cg − dh,

y = af + be+ ch− dg,

z = ag + ce− bh+ df,

w = ah+ de+ bg − cf.

We then have to manually check every possibility. If a, b, c, d, e, f, g, h ∈
Z, then x, y, z, w ∈ Z.
In the product

(a+ bi+ cj+ dk)(e+
1

2
+ (f +

1

2
)i+ (g +

1

2
)j+ (h+

1

2
)k)

each of x, y, z, w is an integer plus one of

a± b± c± d

2

which are either all integers, or all an integer plus 1
2
.

In the product

(a+
1

2
+(b+

1

2
)i+(c+

1

2
)j+(d+

1

2
)k)(e+

1

2
+(f+

1

2
)i+(g+

1

2
)j+(h+

1

2
)k)

each of x, y, z, w is of the form

N +
a± b± c± d± e± f ± g ± h

2
+

1

4
+

1

4
+

1

4
+

1

4

=N + 1 +
a± b± c± d± e± f ± g ± h

2

so some integer N , and we again obtain that either x, y, z, w ∈ Z or
x, y, z, w ∈ Z+ 1

2
.
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ii) Note that
N(α) = a2 + b2 + c2 + d2 ∈ Z

for
α = a+ bi+ cj+ dk.

if a, b, c, d ∈ Z. Similarly, for

α = a+
1

2
+ (b+

1

2
)i+ (c+

1

2
)j+ (d+

1

2
)k

we get
N(α) = a2 + b2 + c2 + d2 + a+ b+ c+ d+ 1 ∈ Z.

iii) Oh dear:

x2 + y2 + z2 + w2 =a2e2 + b2f 2 + c2g2 + d2h2

+ a2f 2 + b2e2 + c2h2 + d2g2

+ a2g2 + c2e2 + b2h2 + d2f 2

+ a2h2 + d2e2 + b2g2 + c2f 2

= (a2 + b2 + c2 + d2)(e2 + f 2 + g2 + h2)

as all the cross terms magically cancel.

iv) The right hand side is

N

(
a+

1

2
+ (b+

1

2
)i+ (c+

1

2
)j+ (d+

1

2
)k

)
.

As noted in the hint, we can rewrite this as

N (2a+ 2bi+ 2cj+ 2dk+ ω)

where we have dropped the primes. Let

α = 2a+ 2bi+ 2cj+ 2dk+ ω.

Then, as ωω = 1

N(α) = αα = αωωα = αωαω.
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Hence, it would suffice to show that αω has integer coefficients. But

αω = 2(a+ bi+ cj+ dk)ω + 1

= 2(a+ bi+ cj+ dk)

(
±1± i± j± k

2

)
+ 1

= (a+ bi+ cj+ dk) (±1± i± j± k) + 1

which has integer coefficients! Thus we are done!

22


