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Exercise 1 Triangles cannot be cut into squares

In lectures, we classified all Pythagorean triples. Describing which positive
integers n arise as the area of right angled triangles with integer side lengths
is a bit harder, but we can show they can never be perfect squares

i) Suppose (a,b,c) is a primitive Pythagorean triple. Show there exists
coprime u,v € N such that v > v and exactly one of v and v is even,
such that the area of the associated triangle is

Alapey = uwv(u® —v?)
Hence, show that for an arbitrary Pythagorean triple, there exist d, u,v €
N such that ged(u,v) = 1, u > v, exactly one of u and v is even, and

the area of the associated triangle is

Alape) = d*uv(u? — v?).


https://www.maths.tcd.ie/~keilthya/teaching/2024/NT/nt.html

ii) Determine if there exists a right angled triangle with integer side lengths
and area 7140

iii) Suppose (a,b,c) is a primitive Pythagorean triangle such that Ay is
a perfect square, and let u, v be as in (i). Show that there exist positive
integers x,y, z, w such that

2

u=a*v=y* u—v=2°

,u—i—vzwz

Hence conclude x is odd and y is even.

Hint: x and y are part of some obvious Pythagorean triples. Are they
primitive?

iv) Determine r,s € N such that (r,s,z) is a primitive Pythagorean triple

i 2
with area yz.

Hint: Why must w £ z be even?

v) Argue that % is an integer and using a descent argument, show no such
(a, b, c) exists.

Remark: You can show that the existence of such an (a,b,c) is equivalent to
the existence of positive integers A, B, C' such that gcd(A, B) = 1, C|AB and

(A2 — C?)(B? — C?) = 20",

As a side effect of this exercise, we can say no such integers exist. This is
absolutely not the smartest proof of that fact.

Solution 1

1. We know there exist u,v as in the question such that a = u? — v2,

b= 2uv and ¢ = u? + v? (up to swapping u and v). Then

b
A(a,b,c) = % = uv(u2 — 1)2)

If (a,b,c) is not primitive, then there exist u,v,d as in the question
such that

a=du® -, b=2duw, c=du®+v?)



and so )
a
Aape) = 5 = d*uv(u® — v?)
. If such a triangle exists, then we can find (u,v,d) as in part (i) such
that

7140 =4 x 3 x 5 X 7 x 17 = d*uv(u — v)(u + v)

It is easy to check that u, v, u—wv,u+wv are all coprime, so we must have
d=1ord=2. Asone of u or v is even, we must have d = 1 (otherwise
there are no factors of 2 left for v or v. Thus, we want to distribute the
five factors 4, 3,5, 7,17 among u, v, u + v, u — v, so at most one of them
has two distinct prime factors. Suppose u has only one prime factor.
Then u > 3, as u > v. If u =4, then v = 3 and we get a contradiction
(u+ v is too small). If u =5 or uw =7, then v = 4 and we again get a
contradiction (u+ v is not a factor). If u =17, then v =4, and u—v is
not a factor. Thus, u has two prime factors. Hence u + v is prime and
the largest, so uw + v = 17. The only way to have u < u + v with two
distinct prime factors is 4 = 12 or u = 15. The second case leads to a
contradiction (v = 2, but if u is odd, v = 4), while the first case works:

u=12, v=5u—v="7u+v=1T7.

. As gedu,v = 1, we also have that ged(u,u £ v) = ged(v,u £v) = 1.
Furthermore, any common divisor of © — v and u + v must divide both
2u, and 2v. The only common divisors of these are 1 and 2. As u £+ v
is odd, we therefore have that ged(u — v, u + v) = 1. Thus, if such a
triangle exists, so

uv(u — v)(u + v)

is a perfect square, then each factor must be a perfect square as they
are pairwise coprime. Thus we get x, y, z, w as in the question, pairwise
coprime. We then have

x2:u:u—v—|—v:w2—|—y2

is a primitive Pythagorean triple, and so x is odd. Hence u is odd and
v 1s even, so y is even.



4. As u — v and u + v are odd, so are z and w. Hence both w — 2z and

w + z are even. Let r = and s = “’;rz. It is easy to see that

w—z

2

5 o 20P+222 utvtu-—v 9
T+5 = 4 = 2 =UuUu=2x

and so (r, s, x) is a Pythagorean triple. To see that it is primitive, note
that ged(z,r) and ged(z, s) divide ged(z?, w? — 22) = ged(u,2v) = 1
as u = x? is odd. Thus ged(z,r) = ged(x,s) = 1 and so (r,s,z) is a
primative Pythagorean triple. The corresponding triangle has area

2

rs  w'—2 utv—(u—v v _y

2 8 8 44
5. y is even, so § is an 2integer. Thus (r,s,z) is a primiti\ge Pythagorean
triple whose area (%) is a perfect square. Furthermore %- = 2 < uv(u+

v)(u—w), so (r, s, x) corresponds to a triangle of smaller area than the
other we started with. We can thus repeat the process, constructing an
infinite sequence of triangles with integer sides and decreasing integer
area. This is impossible, hence no such triangle can exist.

This was the only exercise that you must submit before the
deadline. The following exercises are not mandatory; they are not
worth any points, and you do not have to submit them

However, I strongly encourage you to give them a try, as the best way to
learn number theory is through practice.

The exercises marked with a star are the exercises I will try to
talk about in the tutorial lecture. If there are any exercises would
would particularly like to discuss, please let me know

The exercises are arranged by theme, and roughly in order of difficulty
within each theme, with the first few working as good warm-ups, and the
remainder being of similar difficulty to the main exercise. You are welcome
to lemail me if you have any questions about them. The solutions will be
made available with the solution to the main exercise.
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Exercise 2 General Pythagorean triples

Show that every Pythagorean triple (a, b, c¢) is of the form
a=du*—v?), b=2duw, c=du*+v?

up to swapping a and b, where u, v, d € N satisfy u > v, ged(u, v) and exactly
one of u and v is odd.

Solution 2

If (a,b,c) is primitive, then we know that there exist u,v as required such
that

a=(u*—v?), b=2uv, c=(u*+0?).
Otherwise, (a, b, ¢) have a common divisor greater than 1. Let d = ged(a, b, ¢).
Then (§, g, ¢) is primitive, as any common divisor of two components would
be a common divisor of the third, and hence must be 1. Thus, there exist
u,v as required such that

b
%: (u® —v?), 3= 2uw, 22 (u® + v?)

as needed.

Exercise 3 Hypotenuses of hypotenuses
i) Show that, to any positive integer solution (a, b, c), with a, b, ¢ pairwise

coprime, to
2y =t
we can associate a primitive Pythagorean triple (s,t,c).

ii) Hence, classify all such solutions to

Solution 3

i) Given such a triple, (a, b, c?) is a Pythagorean triple, which is primitive,
as

ged(a, b) = ged(a, ) = ged(a, ¢) = ged(b, ¢?) = ged(b,c) = 1

5



Hence, there exist s,¢ € N such that s > t, ged(s,t) = 1, and exactly
one of s and ¢ is odd such that

§*+ 17 =

Thus (s,t,c) is a Pythagorean triple, that must be primitive. We know
that ged(s,t) = 1, and if there existed a common factor of s and ¢ (or ¢
and ¢, it would have to be a common factor of s and ¢ as well.

ii) Every such solution corresponds uniquely to a primitive Pythagorean
triple (s,¢,c¢). The conditions on s and ¢, up to reordering, are a conse-
quence of primitivity. Every such Pythagorean triple is given by a pair
u,v € N such that u > v, ged(u,v) = 1 and exactly one of u and v is
odd. Thus, every triple (a, b, c) of pairwise coprime integers such that

a?+ b =c
is given by (up to reordering a and b)
a=|u* —6utv? + 0|, b=4>u®—vHuw, c=u®+7

for integers u, v € N such that u > v, ged(u,v) = 1 and exactly one of u
and v is odd.

Exercise 4 Odd numbers in Pythagorean triples
i) Show that, if t,n € N satisfy
2+ (n—1)% =n?
then ged(t,n — 1) = ged(t,n) = 1. Hence conclude that n is odd.

ii) Writing n = 2s + 1, determine for what positive integers s there exists t
such that
2+ (25)* = (25 + 1)?

iii) Hence show that every odd number greater than 1 appears in a primitive
Pythagorean triple.



Solution 4

i)

ii)

iii)

Suppose d|t and d|(n—1). Then d?|n? and hence d|n. Thus d|gcd(n,n—
1) =1, and so d = £1. Similarly, any common divisor of ¢ and n is +1.
Thus ged(t,n — 1) = ged(t,n) = ged(n — 1,n) = 1.

This means that (t,n—1,n) is a primitive Pythagorean triple, and hence
we must have that n is odd.

As (t,2s,2s+1) is a primitive Pythagorean triple, we have that ¢ is odd.
We must also have that
t? =4s+1

and so s = %, which is always an integer, as t is odd. Writing t = 2k+1
for some k > 0, we get s = k? + k. As s is positive, we must have k € N
Thus, for every for every s in the set

{k*+ k| ke N}
we can find a corresponding t.
Given any k£ € N, we have a primitive Pythagorean triple
(2k 4+ 1,2k% 4 2k, 2k* + 2k + 1).

Every odd number greater than 1 appears as the first entry in this triple.

Exercise 5 Areas of Pythagorean triangles

You may freely use the results of Exercise 2 here.

i)

ii)

iii)

Determine if there exists a right angled triangle with integer side lengths
of area 35.

Determine if there exists a right angled triangle with integer side lengths
of area 546.

Show that, for n > 54, there exists a right angled triangle with integer
side lengths, and area between n and 2n.

Hint: Pick a primitive Pythagorean triple (a,b,c) and consider the right
angled triangle with side lengths (ak,bk,ck) for k € N. Given n > 54,
can we find k such that

Area(ak, bk, ck) <n < Area(a(k + 1),b(k +1),c(k+1))?
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If so, how can we bound the second area by 2n?

Remark: Integers that are the areas of right angled triangles with rational

side lengths are called congruent numbers, and can be classified using special
functions called modular forms, which also appear in the proof of Fermat’s
Last Theorem.

Solution 5

i)

ii)

Suppose we have such a triangle, with side lengths (a, b, ¢). Then there
exist u,v,d € N as in Exercise 1, and hence we must have that

1

35 = §ab = d*(u® — v*)uv = d*(u — v)(u + v)uv.

As 35 = 5 x 7 is not divisible by any squares, we must have d = 1. Since
5 and 7 are prime, we must have that 5 divides exactly one of the factors
on the right hand side, and similarly for 7. All remaining factors must
be 1. Since u > v, u # 1, and u+v # 1, that means that u —v =v =1,
and so u = 2, which is not a factor of 35. Therefore, no such right angled
triangle can exist.

Suppose we have such a triangle, with side lengths (a,b,c). Then there
exist u,v,d € N as in Exercise 1 such that

1
546 = iab = d*(u —v)(u + v)uw.
Factorising 546, we see that

546 =2 x 3 x 7 x 13.

This is not divisible by any squares, so we must have d = 1.

Since each prime factor appears exactly once, we just have to figure out
how to distribute them among v < u < u+v and u —v. As exactly one
of v and v is odd, both u + v and u — v are odd, so 2 must divide one of
u or v.

We note also that no pair of {2,3,7,13} sum to another element of the
set, so we cannot have that each factor u,v,u — v, u + v is equal to one
of these primes. In particular, we must have that one of u, v, u —v,u+wv
is equal to 1. The only possibilities are v or u — v.
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If v =1, then u is even. We cannot have u = 2, as then u —v =1
and u + v = 3, which cannot occur given our list of primes, so we must
have v = 2k for some k > 1. Considering the possible values of u and
u+v =wu+ 1, it is clear that this cannot occur: if v + 1 has more than
one prime factor, it is too big compared to u, and if it has exactly one
prime factor, then u has prime factors not in our list.

Thus, u —v =1, so u = v + 1. Considering the possible values of v, we
see that the only possibilities are

(u,v) € {(3,2), (7,6) (14,13)}.

Considering u+v for each of these, we find that (u,v) = (7,6) is possible,
and indeed, the right angled triangle with side lengths (13,84,85) has
area 546.

iii) Consider the triangle with side lengths (3k,4k, 5k). This has area 6k2.
It would suffices to show that for every n > 54, there exists k£ such that

n < 6k* < 2n
Consider the largest k € N such that
6k> <n

We must then have that 12k* < 2n, and, by definition, that 6(k+1)* > n.
Thus, if we can show that

n<6(k+1)<12k* <2n

we are done. The middle inequality holds if 652 — 12k — 1 > 0, which is
true for all k > 3, as 622 — 12z + 1 is increasing for # > 1. Hence, for
all n > 6(3)% = 54, we the claim holds.

Exercise 6 Homogeneous equations and rational solutions

Call a polynomial F(z1,xs,...,x,) homogeneous if and only if there exists
d > 0 such that
F(Axy,..., zn) = XN F(2,...,2,)

for all A € R.



i)

ii)

iii)

iv)

Show that F'(zy,...,z,) has non-zero integer solutions if and only if it
has non-zero rational solutions.

Show that F(z,vy,z) = 2% + y*> — 2% is homogeneous.

As F(z,y, z) is homogeneous, every non-zero integer solution (a, b, ¢) to
F(z,y,z) = 0 corresponds uniquely to a point on the circle

{(z,y) eR* | 2” +y* =1}

with rational coordinates As such, it suffices to find all rational points
on the circle to describe all Pythagorean triples.

Show that every point other than (—1,0) on the circle can be written in
the form

1—t* 2t

L+t27 14 ¢

Show that a point (z,y) # (—1,0) on the circle has rational coordinates
x,y € Q if and only if t € Q.

for a unique t € R

Hence recover our classification of primitive Pythagorean triples.

Hint: Let (a,b,c) be a primitive Pythagorean triple, and write t = 2

where gedu,v = 1. Why must u > v > 07 Then note that if ¢ = A and

=4,
ged(a, ¢) = ged(A,C) = 1, we must have a = A and ¢ = C.

Solution 6

i)

ii)

If F(zy,...,z,) has a non-zero integer solution, that is a non-zero ratio-
nal solution. Conversely, suppose F'(z1,...,x,) = 0 for some non-zero
rational numbers zq,...,z,, and let N be their least common denomi-
nator. Then

F(Nzxy,...,Nx,) = N'F(xy,...,2,) =0

and Nz; € Z for each 1 <11 < n, so we get an integer solution.
(A2)% + (Ay)? — (A2)? = N3 (2? + % — 2%).
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iii)

iv)

We first note that

1—ﬁ2+ 2t \*_,
1+1¢2 1+e2)

so these points are indeed on the circle. Clearly if

22 +y>=1, and x—l_t2

y== 142
then we must have o1
VSTiE

with positive ¢ corresponding to the positive solution to y? = 1 — 22, and
negative t corresponding to the negative solution.

Now, given z € (—1,1], we claim we can always find ¢ € R such that

2 .. . .
} +i2. This is equivalent to solving

r =
1+’ =1—2x

for real t. Since x # —1, we can always find ¢ satisfying this. Thus,
given a pair (z,y) on the circle, we can determine t* from z, and the
sign of ¢ from the sign of y, giving unique ¢ for every pair (x,y).

: : 2 _ 1—=z
Clearly if t € Q, then z,y € Q. Conversely, if z,y € Q, then ¢* = {77 €
Q,s0 1+t €Q, and so

y(1+t?)
2

t= € Q.

A primitive Pythagorean triple (a,b,c), with a odd and b even corre-
sponds to a point on the circle (z,y) = (%, IE’), and hence there exists

rational ¢ such that

a 1—-¢ b 2
c 1+t ¢ 14+t
As b>0,t >0, and so there exist u,v € N such that ged(u,v) =1 and
t=+. Thus
a ur—v* b 2uv

c  ur4v2 ¢ w40?

11



This also implies that © > v as a > 0, and the parity constraint similarly
follows. As ¢ and IE) are fully simplified, since ged(a,c) = ged(b, ¢) = 1,
it suffices to show that

ged(u? — v? u? +0?) = ged(2u, u® +0v?) =1

For the former, suppose that plu? — v? and p|u? + v? for some prime p.
Then p|2u? and p|2v2. Since ged(u,v) = 1, we must have that p|2, i.e
p = 2. Similarly, if ¢|2uv and g|u® + v?, then ¢|(u + v)? and q|(u — v)2.
For ¢ a prime, this implies that ¢|(u 4+ v) and ¢|(u — v), hence ¢|2 and
q = 2. So the only way we have issues in either case is if v and v are
both odd, as this is the only way to have ged(u,v) = 1, and u®+v? even.

But if u,v are both odd, then u? — v? is divisible by 4, which u? + v? is
only divisible by 2, not 4. Hence, when we simplify

UQ—UQ a

u? +v2 ¢
we obtain an even numerator, but a is odd. Thus, we cannot have that
2|u*+v?, and hence the fractions are fully simplified and we can conclude
that

a=u®>—v% b=2uw, c=u’>+0’

Exercise 7 Infinite descent times three

Via the method of infinite descent, show that there are no triples of positive
integers a, b, c € N such that

9+ 3+ =0

Unhelpful Hint: 3

Solution 7

Suppose we have a triple of positive integers satisfying the given equation,
and in particular, one in which ¢ is minimal among all possible triples.

Clearly 3|c® and so 3|c. Hence, there exists ¢; € N such that ¢ = 3¢y, and
9a® +30° + 276 =0 = 9¢ +3a® +10° =0

12



and so we obtain another triple (cy,a,b) satisfying the same equation. We
can thus conclude that 3|b and so b = 3b; for some b; € N, and therefore

963 + 3¢ + a® = 0.
Similarly, we must have that a = 3a; for some a; € N, and so
9a} + 3b3 + ¢} = 0.

But then (aq, b1, c1) is a triple of positive integers satisfying the given equa-
tion, with ¢; < ¢. This contradicts the minimality of ¢, and hence so positive
integer solutions can exist.

Exercise 8 Infinite descent with infinite equations

Consider the Diophantine equation
22+ + 2 = 2ay2.

We want to show that it has no non-negative integer solutions other than
(0,0,0).

1. Show that if (x,y, z) is a solution where at least one of z, y, or z is 0,
then they are all 0.
Knowing this, it suffices to show that we have no positive integer solu-
tions.

2. Show that there are no solutions (x,y, z) where exactly 1 or 3 of z,y,
and z are odd.
Hint: Parity

3. Show that there are no solutions (z,y, z) where exactly 2 of z, y, and
z are odd.
Hint: Parity®: if one is even, what is 2zyz (mod 4)?

4. Show that, given a positive integer solution (z1, 1, 2z1) to the Diophan-
tine equation given, there exists a positive integer solution to the Dio-

phantine equation
v? P+ 2 = 4oy
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5. Show that, given a positive integer solution (xy, Y, zx) to the Diophan-
tine equation
224yt 4 22 = 2k yz

there exists a positive integer solution to the Diophantine equation

4yt 4 22 = 2Ry,

6. Hence conclude that there are no positive integer solutions to

22 4y + 2% = 2zy2
Hint: How important is the equation to infinite descent?

Solution 8
1. If one of x, y, or z is 0, then 2zyz = 0. As
2yt + 22 >0
and each square individually is non-negative, the only way to have
2?4+ + 22 =0
isifr=y=2=0.

2. Note that the right hand side 2zyz is always even. If all of x,y, z are
odd, then 22 + 3% + 2% is the sum of three odd numbers, which is odd,
so there can be no solutions. Similarly, if exactly one of z, y, or z is
odd, then 22 + y? + 22 is odd, so there can be no such solutions.

3. Suppose exactly two of x, y, z are odd and the third is even. Then 2xyz
is 2 times an even number, and so is divisible by 4. Hence, we must
have

24+ +22=0 (mod 4).

But if exactly two of them are odd, then
2+ +22=2 (mod 4).
Thus, there can be no such solutions.
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4. Given a positive integer solution (x1,y1,21) to
22 4y + 2% = 2zyz

we have seen that x1,y;, 21 must all be even. Hence, there exist a, b, c €
N such that
r1=2a, 1y, =2b 2z =2c

which satisfy
4a® + 4b* + 2¢° = 16abc

and hence

Therefore (ZL‘, Y, Z) = (11 Y z1

5. Suppose we have a positive integer solution (z, Y, 2x) to
T kayz

By the same arguments as above, we must have that zy, y, and z; are
all even. Hence, there exist xyy1, Yrr1, 2kr1 € N such that

T = 2%k41, Yk = 2Yk+1s Bk = Zkil-

As (zk, yx, z1) satisfies
2?4yt + 2 = kayz
we have that
Az} + Ay 4500 = 2Py zen

and therefore

i Ui + s = 2P Yk 2k -
Thus (2,y,2) = (Teg1, Yrt1, 2e41) = (5, %, %) is a positive integer
solution to

2?42 + 2% = 2"y,
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6. The equation is mostly irrelevant to infinite descent. What matters is
that we cannot have infinite strictly decreasing sequences of integers.

Suppose we have a positive integer solution (z1,y1, 21) to
o2 4y + 2% = 2ay2.

Then, from the previous parts of the question, we have that there exists
a positive integer solution (x, yx, zx) to

T Qkxyz

such that z; = 2251 for each k£ > 1. In particular, as z; > 0, we must
have that
N> 2>y > > >0

is an infinite decreasing sequence of positive integers. This is impossi-
ble, therefore no such (x1,y1, 21) can exist. Hence, we have no positive
integer solutions.

Exercise 9 Infinite descent for rational solutions
Consider again the equation
2 4 y? + 2% = 2ay2.

We have seen that it has no positive integer solutions. We will now show
that it has no non-zero rational solutions

i) Show that there are no non-zero integer solutions, by considering what
happening is one, two, or three of x,y, z are negative.

ii) Show that the existence of a rational solution is equivalent to the exis-
tence of a triple of rational numbers (z,y, ) such that

22— -y =2,

iii) Show that the existence of a triple of such rational numbers is equivalent
to the existence of a triple (a, b, ¢) of integers such that

a’b* — a® — b* =
Hint: take a common denominator and write (x,y,r) = (%, 2, 1)
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iv)

vi)

vii)

By rewriting the equation as
(> =1 —1)—1=¢
conclude that any integer solution (a, b, ¢) must have a, b, ¢ all even.
Via the same formulation of the equation, show that if (a, b, ¢) satisfies
2V —a?— 1= 2

and ¢ =0, then a = b= 0.
Hint: What are the divisors of 17

Argue by infinite descent that no non-zero integer solution to
CL2b2 _a2 - b2 — C2

exists.

Hint: Let a = 2r, b = 2s, ¢ = 2t. What equation must (r,s,t) satisfy?
What does that tell us about the parity of r, s, and t?

Hence conclude that no non-zero rational solution to
22 4y + 2% = 22y2

exists.

Solution 9

i)

ii)

As we saw in question 1, if one of z, y, z is zero, then they must all be 0. If
one or three of them are negative, then 2zyz < 0, while 224 3%+ 22 > 0,
so we cannot have any such solutions. If two of them are negative,
without loss of generality y and z, then (z, —y, —z) is a positive integer
solution, which cannot exist. Hence, there are no non-zero solutions.

Considering
22 4y + 2% = 2zy2

as a quadratic equation in z, we find that

=gyt \/:B2y2—$2—y2
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iii)

iv)

via the standard formula. If

2 2

-2 -y =r

for a rational number r, we have that z = xy &+ r € Q is rational and so
we obtain a rational solution. Conversely, if z,y, z € Q, we have that

2yt — 2t — = (2 — ay)? = r?
for a rational number r = z — zy.
Suppose we have a triple of integers (a, b, ¢) such that

a262_a2_b2202

Then (a, b, ) is a triple of rational numbers satisfying the same equation.

Conversely, if we have (z,y,r) € Q3, such that
2y — 2 — =12,

then taking a common denominator and writing (z,y,7) = (%, %, 1), we
see that

and so
2 —a?— = (nq)2 — 2

for ¢ = nq, giving a triple of integers satisfying the equation.
The equation is equivalent to
(> = 1)(B* - 1) - 1=~

Considering this mod 4, we see that if a or b is odd, the left hand side
will be congruent to —1 (mod 4), which is not a square modulo 4, so
there can be no solutions. If a is odd, then

(@>—=1DF*-1)-1=1-1)(p*—~1)—1=—-1 (mod 4),
and similarly for b odd. Thus, a and b must be even. Then
(a> = 1)P*—1)—1=(-1)>~-1=0 (mod 4)

and so ¢ must also be even.
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v) If a rational solution to
22 4y + 2% = 2zy2
exists, then an integer solution to
20 —a— = 2

exists. Without loss of generality, we can assume a,b,c¢ > 0. Suppose
we have a solution with ¢ > 0. We must have that a, b, c are all even,
and so there exist non-negative integers r, s,t such that ¢ > 0 and

a=2r, b=2s, c¢=2t.
We can quickly check that (r, s, t) satisfy
4% —r? — % =t2

Considering this modulo 4, we see that we must have that all of r, s,
and ¢ are even. Defining ry = %, s5 = £, ty = 5, we see that (ry, s2,12)

2
satisfies

2,22 2 2 _ 42

More generally, given an integer solution (ry, sy, tx) with ¢, > 0 to

Aray? g2 g2 = 2

we must have that r;, s, t; are all even, and hence we get an integer
solution
(Tk+173k+1>tk+1> = (3 IEREDY

to

4kz+1 2

Py — 2 — P =2
satisfying 0 < 11 < tg. Thus, given an integer solution (a, b, ¢) to

w2y? — gt g2 = 22

with ¢ > 0, we construct an infinite decreasing sequence of positive
integers
c>ty >ty >--->0

which is impossible. Thus, any triple (a, b, ¢) such that
a?b? —a? -1 =2

must have ¢ = 0 and hence a = b = 0.
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vi) If a non-zero rational solution to
22+ 7 + 22 = 2ayz

exists, writing
(@,y,7) = (= —,~)

we find that (a,b,c = gn) is a non-zero integer solution to
A’ —a® - =¢?

which cannot exist. Therefore, no non-zero rational solutions to our
original equation exist.
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